// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2014 Marvell Technology Group Ltd. * * Sebastian Hesselbarth * Alexandre Belloni */ #include #include #include #include #include #include #include "berlin2-avpll.h" /* * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a * VCO with 8 channels each, channel 8 is the odd-one-out and does * not provide mul/div. * * Unfortunately, its registers are not named but just numbered. To * get in at least some kind of structure, we split each AVPLL into * the VCOs and each channel into separate clock drivers. * * Also, here and there the VCO registers are a bit different with * respect to bit shifts. Make sure to add a comment for those. */ #define NUM_CHANNELS 8 #define AVPLL_CTRL(x) ((x) * 0x4) #define VCO_CTRL0 AVPLL_CTRL(0) /* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */ #define VCO_RESET BIT(0) #define VCO_POWERUP BIT(1) #define VCO_INTERPOL_SHIFT 2 #define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT) #define VCO_REG1V45_SEL_SHIFT 6 #define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT) #define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0) #define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1) #define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2) #define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3) #define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3) #define VCO_REG0V9_SEL_SHIFT 8 #define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT) #define VCO_VTHCAL_SHIFT 12 #define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT) #define VCO_VTHCAL_0V90 VCO_VTHCAL(0) #define VCO_VTHCAL_0V95 VCO_VTHCAL(1) #define VCO_VTHCAL_1V00 VCO_VTHCAL(2) #define VCO_VTHCAL_1V05 VCO_VTHCAL(3) #define VCO_VTHCAL_MASK VCO_VTHCAL(3) #define VCO_KVCOEXT_SHIFT 14 #define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT) #define VCO_KVCOEXT_ENABLE BIT(17) #define VCO_V2IEXT_SHIFT 18 #define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT) #define VCO_V2IEXT_ENABLE BIT(22) #define VCO_SPEED_SHIFT 23 #define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT) #define VCO_SPEED_1G08_1G21 VCO_SPEED(0) #define VCO_SPEED_1G21_1G40 VCO_SPEED(1) #define VCO_SPEED_1G40_1G61 VCO_SPEED(2) #define VCO_SPEED_1G61_1G86 VCO_SPEED(3) #define VCO_SPEED_1G86_2G00 VCO_SPEED(4) #define VCO_SPEED_2G00_2G22 VCO_SPEED(5) #define VCO_SPEED_2G22 VCO_SPEED(6) #define VCO_SPEED_MASK VCO_SPEED(0x7) #define VCO_CLKDET_ENABLE BIT(26) #define VCO_CTRL1 AVPLL_CTRL(1) #define VCO_REFDIV_SHIFT 0 #define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT) #define VCO_REFDIV_1 VCO_REFDIV(0) #define VCO_REFDIV_2 VCO_REFDIV(1) #define VCO_REFDIV_4 VCO_REFDIV(2) #define VCO_REFDIV_3 VCO_REFDIV(3) #define VCO_REFDIV_MASK VCO_REFDIV(0x3f) #define VCO_FBDIV_SHIFT 6 #define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT) #define VCO_FBDIV_MASK VCO_FBDIV(0xff) #define VCO_ICP_SHIFT 14 /* PLL Charge Pump Current = 10uA * (x + 1) */ #define VCO_ICP(x) ((x) << VCO_ICP_SHIFT) #define VCO_ICP_MASK VCO_ICP(0xf) #define VCO_LOAD_CAP BIT(18) #define VCO_CALIBRATION_START BIT(19) #define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x)) #define VCO_FREQOFFSET_MASK 0x7ffff #define VCO_CTRL10 AVPLL_CTRL(10) #define VCO_POWERUP_CH1 BIT(20) #define VCO_CTRL11 AVPLL_CTRL(11) #define VCO_CTRL12 AVPLL_CTRL(12) #define VCO_CTRL13 AVPLL_CTRL(13) #define VCO_CTRL14 AVPLL_CTRL(14) #define VCO_CTRL15 AVPLL_CTRL(15) #define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x)) #define VCO_SYNC1_MASK 0x1ffff #define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x)) #define VCO_SYNC2_MASK 0x1ffff #define VCO_CTRL30 AVPLL_CTRL(30) #define VCO_DPLL_CH1_ENABLE BIT(17) struct berlin2_avpll_vco { struct clk_hw hw; void __iomem *base; u8 flags; }; #define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw) static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw) { struct berlin2_avpll_vco *vco = to_avpll_vco(hw); u32 reg; reg = readl_relaxed(vco->base + VCO_CTRL0); if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) reg >>= 4; return !!(reg & VCO_POWERUP); } static int berlin2_avpll_vco_enable(struct clk_hw *hw) { struct berlin2_avpll_vco *vco = to_avpll_vco(hw); u32 reg; reg = readl_relaxed(vco->base + VCO_CTRL0); if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) reg |= VCO_POWERUP << 4; else reg |= VCO_POWERUP; writel_relaxed(reg, vco->base + VCO_CTRL0); return 0; } static void berlin2_avpll_vco_disable(struct clk_hw *hw) { struct berlin2_avpll_vco *vco = to_avpll_vco(hw); u32 reg; reg = readl_relaxed(vco->base + VCO_CTRL0); if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) reg &= ~(VCO_POWERUP << 4); else reg &= ~VCO_POWERUP; writel_relaxed(reg, vco->base + VCO_CTRL0); } static u8 vco_refdiv[] = { 1, 2, 4, 3 }; static unsigned long berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct berlin2_avpll_vco *vco = to_avpll_vco(hw); u32 reg, refdiv, fbdiv; u64 freq = parent_rate; /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */ reg = readl_relaxed(vco->base + VCO_CTRL1); refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT; refdiv = vco_refdiv[refdiv]; fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT; freq *= fbdiv; do_div(freq, refdiv); return (unsigned long)freq; } static const struct clk_ops berlin2_avpll_vco_ops = { .is_enabled = berlin2_avpll_vco_is_enabled, .enable = berlin2_avpll_vco_enable, .disable = berlin2_avpll_vco_disable, .recalc_rate = berlin2_avpll_vco_recalc_rate, }; int __init berlin2_avpll_vco_register(void __iomem *base, const char *name, const char *parent_name, u8 vco_flags, unsigned long flags) { struct berlin2_avpll_vco *vco; struct clk_init_data init; vco = kzalloc(sizeof(*vco), GFP_KERNEL); if (!vco) return -ENOMEM; vco->base = base; vco->flags = vco_flags; vco->hw.init = &init; init.name = name; init.ops = &berlin2_avpll_vco_ops; init.parent_names = &parent_name; init.num_parents = 1; init.flags = flags; return clk_hw_register(NULL, &vco->hw); } struct berlin2_avpll_channel { struct clk_hw hw; void __iomem *base; u8 flags; u8 index; }; #define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw) static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw) { struct berlin2_avpll_channel *ch = to_avpll_channel(hw); u32 reg; if (ch->index == 7) return 1; reg = readl_relaxed(ch->base + VCO_CTRL10); reg &= VCO_POWERUP_CH1 << ch->index; return !!reg; } static int berlin2_avpll_channel_enable(struct clk_hw *hw) { struct berlin2_avpll_channel *ch = to_avpll_channel(hw); u32 reg; reg = readl_relaxed(ch->base + VCO_CTRL10); reg |= VCO_POWERUP_CH1 << ch->index; writel_relaxed(reg, ch->base + VCO_CTRL10); return 0; } static void berlin2_avpll_channel_disable(struct clk_hw *hw) { struct berlin2_avpll_channel *ch = to_avpll_channel(hw); u32 reg; reg = readl_relaxed(ch->base + VCO_CTRL10); reg &= ~(VCO_POWERUP_CH1 << ch->index); writel_relaxed(reg, ch->base + VCO_CTRL10); } static const u8 div_hdmi[] = { 1, 2, 4, 6 }; static const u8 div_av1[] = { 1, 2, 5, 5 }; static unsigned long berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct berlin2_avpll_channel *ch = to_avpll_channel(hw); u32 reg, div_av2, div_av3, divider = 1; u64 freq = parent_rate; reg = readl_relaxed(ch->base + VCO_CTRL30); if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0) goto skip_div; /* * Fch = (Fref * sync2) / * (sync1 * div_hdmi * div_av1 * div_av2 * div_av3) */ reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index)); /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */ if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0) reg >>= 4; divider = reg & VCO_SYNC1_MASK; reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index)); freq *= reg & VCO_SYNC2_MASK; /* Channel 8 has no dividers */ if (ch->index == 7) goto skip_div; /* * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit * determine divider. */ reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7; reg = (reg >> (ch->index * 3)); if (reg & BIT(2)) divider *= div_hdmi[reg & 0x3]; /* * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit * determine divider. */ if (ch->index == 0) { reg = readl_relaxed(ch->base + VCO_CTRL11); reg >>= 28; } else { reg = readl_relaxed(ch->base + VCO_CTRL12); reg >>= (ch->index-1) * 3; } if (reg & BIT(2)) divider *= div_av1[reg & 0x3]; /* * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide, * zero is not a valid value. */ if (ch->index < 2) { reg = readl_relaxed(ch->base + VCO_CTRL12); reg >>= 18 + (ch->index * 7); } else if (ch->index < 7) { reg = readl_relaxed(ch->base + VCO_CTRL13); reg >>= (ch->index - 2) * 7; } else { reg = readl_relaxed(ch->base + VCO_CTRL14); } div_av2 = reg & 0x7f; if (div_av2) divider *= div_av2; /* * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide. * AV2/AV3 form a fractional divider, where only specfic values for AV3 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass. */ if (ch->index < 6) { reg = readl_relaxed(ch->base + VCO_CTRL14); reg >>= 7 + (ch->index * 4); } else { reg = readl_relaxed(ch->base + VCO_CTRL15); } div_av3 = reg & 0xf; if (div_av2 && div_av3) freq *= 2; skip_div: do_div(freq, divider); return (unsigned long)freq; } static const struct clk_ops berlin2_avpll_channel_ops = { .is_enabled = berlin2_avpll_channel_is_enabled, .enable = berlin2_avpll_channel_enable, .disable = berlin2_avpll_channel_disable, .recalc_rate = berlin2_avpll_channel_recalc_rate, }; /* * Another nice quirk: * On some production SoCs, AVPLL channels are scrambled with respect * to the channel numbering in the registers but still referenced by * their original channel numbers. We deal with it by having a flag * and a translation table for the index. */ static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 }; int __init berlin2_avpll_channel_register(void __iomem *base, const char *name, u8 index, const char *parent_name, u8 ch_flags, unsigned long flags) { struct berlin2_avpll_channel *ch; struct clk_init_data init; ch = kzalloc(sizeof(*ch), GFP_KERNEL); if (!ch) return -ENOMEM; ch->base = base; if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK) ch->index = quirk_index[index]; else ch->index = index; ch->flags = ch_flags; ch->hw.init = &init; init.name = name; init.ops = &berlin2_avpll_channel_ops; init.parent_names = &parent_name; init.num_parents = 1; init.flags = flags; return clk_hw_register(NULL, &ch->hw); }