// SPDX-License-Identifier: GPL-2.0-only /* * AXI clkgen driver * * Copyright 2012-2013 Analog Devices Inc. * Author: Lars-Peter Clausen */ #include #include #include #include #include #include #include #define AXI_CLKGEN_V2_REG_RESET 0x40 #define AXI_CLKGEN_V2_REG_CLKSEL 0x44 #define AXI_CLKGEN_V2_REG_DRP_CNTRL 0x70 #define AXI_CLKGEN_V2_REG_DRP_STATUS 0x74 #define AXI_CLKGEN_V2_RESET_MMCM_ENABLE BIT(1) #define AXI_CLKGEN_V2_RESET_ENABLE BIT(0) #define AXI_CLKGEN_V2_DRP_CNTRL_SEL BIT(29) #define AXI_CLKGEN_V2_DRP_CNTRL_READ BIT(28) #define AXI_CLKGEN_V2_DRP_STATUS_BUSY BIT(16) #define MMCM_REG_CLKOUT5_2 0x07 #define MMCM_REG_CLKOUT0_1 0x08 #define MMCM_REG_CLKOUT0_2 0x09 #define MMCM_REG_CLKOUT6_2 0x13 #define MMCM_REG_CLK_FB1 0x14 #define MMCM_REG_CLK_FB2 0x15 #define MMCM_REG_CLK_DIV 0x16 #define MMCM_REG_LOCK1 0x18 #define MMCM_REG_LOCK2 0x19 #define MMCM_REG_LOCK3 0x1a #define MMCM_REG_POWER 0x28 #define MMCM_REG_FILTER1 0x4e #define MMCM_REG_FILTER2 0x4f #define MMCM_CLKOUT_NOCOUNT BIT(6) #define MMCM_CLK_DIV_DIVIDE BIT(11) #define MMCM_CLK_DIV_NOCOUNT BIT(12) struct axi_clkgen_limits { unsigned int fpfd_min; unsigned int fpfd_max; unsigned int fvco_min; unsigned int fvco_max; }; struct axi_clkgen { void __iomem *base; struct clk_hw clk_hw; struct axi_clkgen_limits limits; }; static uint32_t axi_clkgen_lookup_filter(unsigned int m) { switch (m) { case 0: return 0x01001990; case 1: return 0x01001190; case 2: return 0x01009890; case 3: return 0x01001890; case 4: return 0x01008890; case 5 ... 8: return 0x01009090; case 9 ... 11: return 0x01000890; case 12: return 0x08009090; case 13 ... 22: return 0x01001090; case 23 ... 36: return 0x01008090; case 37 ... 46: return 0x08001090; default: return 0x08008090; } } static const uint32_t axi_clkgen_lock_table[] = { 0x060603e8, 0x060603e8, 0x080803e8, 0x0b0b03e8, 0x0e0e03e8, 0x111103e8, 0x131303e8, 0x161603e8, 0x191903e8, 0x1c1c03e8, 0x1f1f0384, 0x1f1f0339, 0x1f1f02ee, 0x1f1f02bc, 0x1f1f028a, 0x1f1f0271, 0x1f1f023f, 0x1f1f0226, 0x1f1f020d, 0x1f1f01f4, 0x1f1f01db, 0x1f1f01c2, 0x1f1f01a9, 0x1f1f0190, 0x1f1f0190, 0x1f1f0177, 0x1f1f015e, 0x1f1f015e, 0x1f1f0145, 0x1f1f0145, 0x1f1f012c, 0x1f1f012c, 0x1f1f012c, 0x1f1f0113, 0x1f1f0113, 0x1f1f0113, }; static uint32_t axi_clkgen_lookup_lock(unsigned int m) { if (m < ARRAY_SIZE(axi_clkgen_lock_table)) return axi_clkgen_lock_table[m]; return 0x1f1f00fa; } static const struct axi_clkgen_limits axi_clkgen_zynqmp_default_limits = { .fpfd_min = 10000, .fpfd_max = 450000, .fvco_min = 800000, .fvco_max = 1600000, }; static const struct axi_clkgen_limits axi_clkgen_zynq_default_limits = { .fpfd_min = 10000, .fpfd_max = 300000, .fvco_min = 600000, .fvco_max = 1200000, }; static void axi_clkgen_calc_params(const struct axi_clkgen_limits *limits, unsigned long fin, unsigned long fout, unsigned int *best_d, unsigned int *best_m, unsigned int *best_dout) { unsigned long d, d_min, d_max, _d_min, _d_max; unsigned long m, m_min, m_max; unsigned long f, dout, best_f, fvco; unsigned long fract_shift = 0; unsigned long fvco_min_fract, fvco_max_fract; fin /= 1000; fout /= 1000; best_f = ULONG_MAX; *best_d = 0; *best_m = 0; *best_dout = 0; d_min = max_t(unsigned long, DIV_ROUND_UP(fin, limits->fpfd_max), 1); d_max = min_t(unsigned long, fin / limits->fpfd_min, 80); again: fvco_min_fract = limits->fvco_min << fract_shift; fvco_max_fract = limits->fvco_max << fract_shift; m_min = max_t(unsigned long, DIV_ROUND_UP(fvco_min_fract, fin) * d_min, 1); m_max = min_t(unsigned long, fvco_max_fract * d_max / fin, 64 << fract_shift); for (m = m_min; m <= m_max; m++) { _d_min = max(d_min, DIV_ROUND_UP(fin * m, fvco_max_fract)); _d_max = min(d_max, fin * m / fvco_min_fract); for (d = _d_min; d <= _d_max; d++) { fvco = fin * m / d; dout = DIV_ROUND_CLOSEST(fvco, fout); dout = clamp_t(unsigned long, dout, 1, 128 << fract_shift); f = fvco / dout; if (abs(f - fout) < abs(best_f - fout)) { best_f = f; *best_d = d; *best_m = m << (3 - fract_shift); *best_dout = dout << (3 - fract_shift); if (best_f == fout) return; } } } /* Lets see if we find a better setting in fractional mode */ if (fract_shift == 0) { fract_shift = 3; goto again; } } struct axi_clkgen_div_params { unsigned int low; unsigned int high; unsigned int edge; unsigned int nocount; unsigned int frac_en; unsigned int frac; unsigned int frac_wf_f; unsigned int frac_wf_r; unsigned int frac_phase; }; static void axi_clkgen_calc_clk_params(unsigned int divider, unsigned int frac_divider, struct axi_clkgen_div_params *params) { memset(params, 0x0, sizeof(*params)); if (divider == 1) { params->nocount = 1; return; } if (frac_divider == 0) { params->high = divider / 2; params->edge = divider % 2; params->low = divider - params->high; } else { params->frac_en = 1; params->frac = frac_divider; params->high = divider / 2; params->edge = divider % 2; params->low = params->high; if (params->edge == 0) { params->high--; params->frac_wf_r = 1; } if (params->edge == 0 || frac_divider == 1) params->low--; if (((params->edge == 0) ^ (frac_divider == 1)) || (divider == 2 && frac_divider == 1)) params->frac_wf_f = 1; params->frac_phase = params->edge * 4 + frac_divider / 2; } } static void axi_clkgen_write(struct axi_clkgen *axi_clkgen, unsigned int reg, unsigned int val) { writel(val, axi_clkgen->base + reg); } static void axi_clkgen_read(struct axi_clkgen *axi_clkgen, unsigned int reg, unsigned int *val) { *val = readl(axi_clkgen->base + reg); } static int axi_clkgen_wait_non_busy(struct axi_clkgen *axi_clkgen) { unsigned int timeout = 10000; unsigned int val; do { axi_clkgen_read(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_STATUS, &val); } while ((val & AXI_CLKGEN_V2_DRP_STATUS_BUSY) && --timeout); if (val & AXI_CLKGEN_V2_DRP_STATUS_BUSY) return -EIO; return val & 0xffff; } static int axi_clkgen_mmcm_read(struct axi_clkgen *axi_clkgen, unsigned int reg, unsigned int *val) { unsigned int reg_val; int ret; ret = axi_clkgen_wait_non_busy(axi_clkgen); if (ret < 0) return ret; reg_val = AXI_CLKGEN_V2_DRP_CNTRL_SEL | AXI_CLKGEN_V2_DRP_CNTRL_READ; reg_val |= (reg << 16); axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_CNTRL, reg_val); ret = axi_clkgen_wait_non_busy(axi_clkgen); if (ret < 0) return ret; *val = ret; return 0; } static int axi_clkgen_mmcm_write(struct axi_clkgen *axi_clkgen, unsigned int reg, unsigned int val, unsigned int mask) { unsigned int reg_val = 0; int ret; ret = axi_clkgen_wait_non_busy(axi_clkgen); if (ret < 0) return ret; if (mask != 0xffff) { axi_clkgen_mmcm_read(axi_clkgen, reg, ®_val); reg_val &= ~mask; } reg_val |= AXI_CLKGEN_V2_DRP_CNTRL_SEL | (reg << 16) | (val & mask); axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_CNTRL, reg_val); return 0; } static void axi_clkgen_mmcm_enable(struct axi_clkgen *axi_clkgen, bool enable) { unsigned int val = AXI_CLKGEN_V2_RESET_ENABLE; if (enable) val |= AXI_CLKGEN_V2_RESET_MMCM_ENABLE; axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_RESET, val); } static struct axi_clkgen *clk_hw_to_axi_clkgen(struct clk_hw *clk_hw) { return container_of(clk_hw, struct axi_clkgen, clk_hw); } static void axi_clkgen_set_div(struct axi_clkgen *axi_clkgen, unsigned int reg1, unsigned int reg2, unsigned int reg3, struct axi_clkgen_div_params *params) { axi_clkgen_mmcm_write(axi_clkgen, reg1, (params->high << 6) | params->low, 0xefff); axi_clkgen_mmcm_write(axi_clkgen, reg2, (params->frac << 12) | (params->frac_en << 11) | (params->frac_wf_r << 10) | (params->edge << 7) | (params->nocount << 6), 0x7fff); if (reg3 != 0) { axi_clkgen_mmcm_write(axi_clkgen, reg3, (params->frac_phase << 11) | (params->frac_wf_f << 10), 0x3c00); } } static int axi_clkgen_set_rate(struct clk_hw *clk_hw, unsigned long rate, unsigned long parent_rate) { struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw); const struct axi_clkgen_limits *limits = &axi_clkgen->limits; unsigned int d, m, dout; struct axi_clkgen_div_params params; uint32_t power = 0; uint32_t filter; uint32_t lock; if (parent_rate == 0 || rate == 0) return -EINVAL; axi_clkgen_calc_params(limits, parent_rate, rate, &d, &m, &dout); if (d == 0 || dout == 0 || m == 0) return -EINVAL; if ((dout & 0x7) != 0 || (m & 0x7) != 0) power |= 0x9800; axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_POWER, power, 0x9800); filter = axi_clkgen_lookup_filter(m - 1); lock = axi_clkgen_lookup_lock(m - 1); axi_clkgen_calc_clk_params(dout >> 3, dout & 0x7, ¶ms); axi_clkgen_set_div(axi_clkgen, MMCM_REG_CLKOUT0_1, MMCM_REG_CLKOUT0_2, MMCM_REG_CLKOUT5_2, ¶ms); axi_clkgen_calc_clk_params(d, 0, ¶ms); axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLK_DIV, (params.edge << 13) | (params.nocount << 12) | (params.high << 6) | params.low, 0x3fff); axi_clkgen_calc_clk_params(m >> 3, m & 0x7, ¶ms); axi_clkgen_set_div(axi_clkgen, MMCM_REG_CLK_FB1, MMCM_REG_CLK_FB2, MMCM_REG_CLKOUT6_2, ¶ms); axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK1, lock & 0x3ff, 0x3ff); axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK2, (((lock >> 16) & 0x1f) << 10) | 0x1, 0x7fff); axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK3, (((lock >> 24) & 0x1f) << 10) | 0x3e9, 0x7fff); axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_FILTER1, filter >> 16, 0x9900); axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_FILTER2, filter, 0x9900); return 0; } static long axi_clkgen_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(hw); const struct axi_clkgen_limits *limits = &axi_clkgen->limits; unsigned int d, m, dout; unsigned long long tmp; axi_clkgen_calc_params(limits, *parent_rate, rate, &d, &m, &dout); if (d == 0 || dout == 0 || m == 0) return -EINVAL; tmp = (unsigned long long)*parent_rate * m; tmp = DIV_ROUND_CLOSEST_ULL(tmp, dout * d); return min_t(unsigned long long, tmp, LONG_MAX); } static unsigned int axi_clkgen_get_div(struct axi_clkgen *axi_clkgen, unsigned int reg1, unsigned int reg2) { unsigned int val1, val2; unsigned int div; axi_clkgen_mmcm_read(axi_clkgen, reg2, &val2); if (val2 & MMCM_CLKOUT_NOCOUNT) return 8; axi_clkgen_mmcm_read(axi_clkgen, reg1, &val1); div = (val1 & 0x3f) + ((val1 >> 6) & 0x3f); div <<= 3; if (val2 & MMCM_CLK_DIV_DIVIDE) { if ((val2 & BIT(7)) && (val2 & 0x7000) != 0x1000) div += 8; else div += 16; div += (val2 >> 12) & 0x7; } return div; } static unsigned long axi_clkgen_recalc_rate(struct clk_hw *clk_hw, unsigned long parent_rate) { struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw); unsigned int d, m, dout; unsigned long long tmp; unsigned int val; dout = axi_clkgen_get_div(axi_clkgen, MMCM_REG_CLKOUT0_1, MMCM_REG_CLKOUT0_2); m = axi_clkgen_get_div(axi_clkgen, MMCM_REG_CLK_FB1, MMCM_REG_CLK_FB2); axi_clkgen_mmcm_read(axi_clkgen, MMCM_REG_CLK_DIV, &val); if (val & MMCM_CLK_DIV_NOCOUNT) d = 1; else d = (val & 0x3f) + ((val >> 6) & 0x3f); if (d == 0 || dout == 0) return 0; tmp = (unsigned long long)parent_rate * m; tmp = DIV_ROUND_CLOSEST_ULL(tmp, dout * d); return min_t(unsigned long long, tmp, ULONG_MAX); } static int axi_clkgen_enable(struct clk_hw *clk_hw) { struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw); axi_clkgen_mmcm_enable(axi_clkgen, true); return 0; } static void axi_clkgen_disable(struct clk_hw *clk_hw) { struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw); axi_clkgen_mmcm_enable(axi_clkgen, false); } static int axi_clkgen_set_parent(struct clk_hw *clk_hw, u8 index) { struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw); axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_CLKSEL, index); return 0; } static u8 axi_clkgen_get_parent(struct clk_hw *clk_hw) { struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw); unsigned int parent; axi_clkgen_read(axi_clkgen, AXI_CLKGEN_V2_REG_CLKSEL, &parent); return parent; } static const struct clk_ops axi_clkgen_ops = { .recalc_rate = axi_clkgen_recalc_rate, .round_rate = axi_clkgen_round_rate, .set_rate = axi_clkgen_set_rate, .enable = axi_clkgen_enable, .disable = axi_clkgen_disable, .set_parent = axi_clkgen_set_parent, .get_parent = axi_clkgen_get_parent, }; static int axi_clkgen_probe(struct platform_device *pdev) { const struct axi_clkgen_limits *dflt_limits; struct axi_clkgen *axi_clkgen; struct clk_init_data init; const char *parent_names[2]; const char *clk_name; unsigned int i; int ret; dflt_limits = device_get_match_data(&pdev->dev); if (!dflt_limits) return -ENODEV; axi_clkgen = devm_kzalloc(&pdev->dev, sizeof(*axi_clkgen), GFP_KERNEL); if (!axi_clkgen) return -ENOMEM; axi_clkgen->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(axi_clkgen->base)) return PTR_ERR(axi_clkgen->base); init.num_parents = of_clk_get_parent_count(pdev->dev.of_node); if (init.num_parents < 1 || init.num_parents > 2) return -EINVAL; for (i = 0; i < init.num_parents; i++) { parent_names[i] = of_clk_get_parent_name(pdev->dev.of_node, i); if (!parent_names[i]) return -EINVAL; } memcpy(&axi_clkgen->limits, dflt_limits, sizeof(axi_clkgen->limits)); clk_name = pdev->dev.of_node->name; of_property_read_string(pdev->dev.of_node, "clock-output-names", &clk_name); init.name = clk_name; init.ops = &axi_clkgen_ops; init.flags = CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; init.parent_names = parent_names; axi_clkgen_mmcm_enable(axi_clkgen, false); axi_clkgen->clk_hw.init = &init; ret = devm_clk_hw_register(&pdev->dev, &axi_clkgen->clk_hw); if (ret) return ret; return of_clk_add_hw_provider(pdev->dev.of_node, of_clk_hw_simple_get, &axi_clkgen->clk_hw); } static int axi_clkgen_remove(struct platform_device *pdev) { of_clk_del_provider(pdev->dev.of_node); return 0; } static const struct of_device_id axi_clkgen_ids[] = { { .compatible = "adi,zynqmp-axi-clkgen-2.00.a", .data = &axi_clkgen_zynqmp_default_limits, }, { .compatible = "adi,axi-clkgen-2.00.a", .data = &axi_clkgen_zynq_default_limits, }, { } }; MODULE_DEVICE_TABLE(of, axi_clkgen_ids); static struct platform_driver axi_clkgen_driver = { .driver = { .name = "adi-axi-clkgen", .of_match_table = axi_clkgen_ids, }, .probe = axi_clkgen_probe, .remove = axi_clkgen_remove, }; module_platform_driver(axi_clkgen_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Lars-Peter Clausen "); MODULE_DESCRIPTION("Driver for the Analog Devices' AXI clkgen pcore clock generator");