// SPDX-License-Identifier: GPL-2.0 /* * Driver for Silicon Labs Si544 Programmable Oscillator * Copyright (C) 2018 Topic Embedded Products * Author: Mike Looijmans */ #include #include #include #include #include #include #include /* I2C registers (decimal as in datasheet) */ #define SI544_REG_CONTROL 7 #define SI544_REG_OE_STATE 17 #define SI544_REG_HS_DIV 23 #define SI544_REG_LS_HS_DIV 24 #define SI544_REG_FBDIV0 26 #define SI544_REG_FBDIV8 27 #define SI544_REG_FBDIV16 28 #define SI544_REG_FBDIV24 29 #define SI544_REG_FBDIV32 30 #define SI544_REG_FBDIV40 31 #define SI544_REG_FCAL_OVR 69 #define SI544_REG_ADPLL_DELTA_M0 231 #define SI544_REG_ADPLL_DELTA_M8 232 #define SI544_REG_ADPLL_DELTA_M16 233 #define SI544_REG_PAGE_SELECT 255 /* Register values */ #define SI544_CONTROL_RESET BIT(7) #define SI544_CONTROL_MS_ICAL2 BIT(3) #define SI544_OE_STATE_ODC_OE BIT(0) /* Max freq depends on speed grade */ #define SI544_MIN_FREQ 200000U /* Si544 Internal oscilator runs at 55.05 MHz */ #define FXO 55050000U /* VCO range is 10.8 .. 12.1 GHz, max depends on speed grade */ #define FVCO_MIN 10800000000ULL #define HS_DIV_MAX 2046 #define HS_DIV_MAX_ODD 33 /* Lowest frequency synthesizeable using only the HS divider */ #define MIN_HSDIV_FREQ (FVCO_MIN / HS_DIV_MAX) /* Range and interpretation of the adjustment value */ #define DELTA_M_MAX 8161512 #define DELTA_M_FRAC_NUM 19 #define DELTA_M_FRAC_DEN 20000 enum si544_speed_grade { si544a, si544b, si544c, }; struct clk_si544 { struct clk_hw hw; struct regmap *regmap; struct i2c_client *i2c_client; enum si544_speed_grade speed_grade; }; #define to_clk_si544(_hw) container_of(_hw, struct clk_si544, hw) /** * struct clk_si544_muldiv - Multiplier/divider settings * @fb_div_frac: integer part of feedback divider (32 bits) * @fb_div_int: fractional part of feedback divider (11 bits) * @hs_div: 1st divider, 5..2046, must be even when >33 * @ls_div_bits: 2nd divider, as 2^x, range 0..5 * If ls_div_bits is non-zero, hs_div must be even * @delta_m: Frequency shift for small -950..+950 ppm changes, 24 bit */ struct clk_si544_muldiv { u32 fb_div_frac; u16 fb_div_int; u16 hs_div; u8 ls_div_bits; s32 delta_m; }; /* Enables or disables the output driver */ static int si544_enable_output(struct clk_si544 *data, bool enable) { return regmap_update_bits(data->regmap, SI544_REG_OE_STATE, SI544_OE_STATE_ODC_OE, enable ? SI544_OE_STATE_ODC_OE : 0); } static int si544_prepare(struct clk_hw *hw) { struct clk_si544 *data = to_clk_si544(hw); return si544_enable_output(data, true); } static void si544_unprepare(struct clk_hw *hw) { struct clk_si544 *data = to_clk_si544(hw); si544_enable_output(data, false); } static int si544_is_prepared(struct clk_hw *hw) { struct clk_si544 *data = to_clk_si544(hw); unsigned int val; int err; err = regmap_read(data->regmap, SI544_REG_OE_STATE, &val); if (err < 0) return err; return !!(val & SI544_OE_STATE_ODC_OE); } /* Retrieve clock multiplier and dividers from hardware */ static int si544_get_muldiv(struct clk_si544 *data, struct clk_si544_muldiv *settings) { int err; u8 reg[6]; err = regmap_bulk_read(data->regmap, SI544_REG_HS_DIV, reg, 2); if (err) return err; settings->ls_div_bits = (reg[1] >> 4) & 0x07; settings->hs_div = (reg[1] & 0x07) << 8 | reg[0]; err = regmap_bulk_read(data->regmap, SI544_REG_FBDIV0, reg, 6); if (err) return err; settings->fb_div_int = reg[4] | (reg[5] & 0x07) << 8; settings->fb_div_frac = reg[0] | reg[1] << 8 | reg[2] << 16 | reg[3] << 24; err = regmap_bulk_read(data->regmap, SI544_REG_ADPLL_DELTA_M0, reg, 3); if (err) return err; /* Interpret as 24-bit signed number */ settings->delta_m = reg[0] << 8 | reg[1] << 16 | reg[2] << 24; settings->delta_m >>= 8; return 0; } static int si544_set_delta_m(struct clk_si544 *data, s32 delta_m) { u8 reg[3]; reg[0] = delta_m; reg[1] = delta_m >> 8; reg[2] = delta_m >> 16; return regmap_bulk_write(data->regmap, SI544_REG_ADPLL_DELTA_M0, reg, 3); } static int si544_set_muldiv(struct clk_si544 *data, struct clk_si544_muldiv *settings) { int err; u8 reg[6]; reg[0] = settings->hs_div; reg[1] = settings->hs_div >> 8 | settings->ls_div_bits << 4; err = regmap_bulk_write(data->regmap, SI544_REG_HS_DIV, reg, 2); if (err < 0) return err; reg[0] = settings->fb_div_frac; reg[1] = settings->fb_div_frac >> 8; reg[2] = settings->fb_div_frac >> 16; reg[3] = settings->fb_div_frac >> 24; reg[4] = settings->fb_div_int; reg[5] = settings->fb_div_int >> 8; /* * Writing to SI544_REG_FBDIV40 triggers the clock change, so that * must be written last */ return regmap_bulk_write(data->regmap, SI544_REG_FBDIV0, reg, 6); } static bool is_valid_frequency(const struct clk_si544 *data, unsigned long frequency) { unsigned long max_freq = 0; if (frequency < SI544_MIN_FREQ) return false; switch (data->speed_grade) { case si544a: max_freq = 1500000000; break; case si544b: max_freq = 800000000; break; case si544c: max_freq = 350000000; break; } return frequency <= max_freq; } /* Calculate divider settings for a given frequency */ static int si544_calc_muldiv(struct clk_si544_muldiv *settings, unsigned long frequency) { u64 vco; u32 ls_freq; u32 tmp; u8 res; /* Determine the minimum value of LS_DIV and resulting target freq. */ ls_freq = frequency; settings->ls_div_bits = 0; if (frequency >= MIN_HSDIV_FREQ) { settings->ls_div_bits = 0; } else { res = 1; tmp = 2 * HS_DIV_MAX; while (tmp <= (HS_DIV_MAX * 32)) { if (((u64)frequency * tmp) >= FVCO_MIN) break; ++res; tmp <<= 1; } settings->ls_div_bits = res; ls_freq = frequency << res; } /* Determine minimum HS_DIV by rounding up */ vco = FVCO_MIN + ls_freq - 1; do_div(vco, ls_freq); settings->hs_div = vco; /* round up to even number when required */ if ((settings->hs_div & 1) && (settings->hs_div > HS_DIV_MAX_ODD || settings->ls_div_bits)) ++settings->hs_div; /* Calculate VCO frequency (in 10..12GHz range) */ vco = (u64)ls_freq * settings->hs_div; /* Calculate the integer part of the feedback divider */ tmp = do_div(vco, FXO); settings->fb_div_int = vco; /* And the fractional bits using the remainder */ vco = (u64)tmp << 32; vco += FXO / 2; /* Round to nearest multiple */ do_div(vco, FXO); settings->fb_div_frac = vco; /* Reset the frequency adjustment */ settings->delta_m = 0; return 0; } /* Calculate resulting frequency given the register settings */ static unsigned long si544_calc_center_rate( const struct clk_si544_muldiv *settings) { u32 d = settings->hs_div * BIT(settings->ls_div_bits); u64 vco; /* Calculate VCO from the fractional part */ vco = (u64)settings->fb_div_frac * FXO; vco += (FXO / 2); vco >>= 32; /* Add the integer part of the VCO frequency */ vco += (u64)settings->fb_div_int * FXO; /* Apply divider to obtain the generated frequency */ do_div(vco, d); return vco; } static unsigned long si544_calc_rate(const struct clk_si544_muldiv *settings) { unsigned long rate = si544_calc_center_rate(settings); s64 delta = (s64)rate * (DELTA_M_FRAC_NUM * settings->delta_m); /* * The clock adjustment is much smaller than 1 Hz, round to the * nearest multiple. Apparently div64_s64 rounds towards zero, hence * check the sign and adjust into the proper direction. */ if (settings->delta_m < 0) delta -= ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN) / 2; else delta += ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN) / 2; delta = div64_s64(delta, ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN)); return rate + delta; } static unsigned long si544_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_si544 *data = to_clk_si544(hw); struct clk_si544_muldiv settings; int err; err = si544_get_muldiv(data, &settings); if (err) return 0; return si544_calc_rate(&settings); } static long si544_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_si544 *data = to_clk_si544(hw); if (!is_valid_frequency(data, rate)) return -EINVAL; /* The accuracy is less than 1 Hz, so any rate is possible */ return rate; } /* Calculates the maximum "small" change, 950 * rate / 1000000 */ static unsigned long si544_max_delta(unsigned long rate) { u64 num = rate; num *= DELTA_M_FRAC_NUM; do_div(num, DELTA_M_FRAC_DEN); return num; } static s32 si544_calc_delta(s32 delta, s32 max_delta) { s64 n = (s64)delta * DELTA_M_MAX; return div_s64(n, max_delta); } static int si544_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_si544 *data = to_clk_si544(hw); struct clk_si544_muldiv settings; unsigned long center; long max_delta; long delta; unsigned int old_oe_state; int err; if (!is_valid_frequency(data, rate)) return -EINVAL; /* Try using the frequency adjustment feature for a <= 950ppm change */ err = si544_get_muldiv(data, &settings); if (err) return err; center = si544_calc_center_rate(&settings); max_delta = si544_max_delta(center); delta = rate - center; if (abs(delta) <= max_delta) return si544_set_delta_m(data, si544_calc_delta(delta, max_delta)); /* Too big for the delta adjustment, need to reprogram */ err = si544_calc_muldiv(&settings, rate); if (err) return err; err = regmap_read(data->regmap, SI544_REG_OE_STATE, &old_oe_state); if (err) return err; si544_enable_output(data, false); /* Allow FCAL for this frequency update */ err = regmap_write(data->regmap, SI544_REG_FCAL_OVR, 0); if (err < 0) return err; err = si544_set_delta_m(data, settings.delta_m); if (err < 0) return err; err = si544_set_muldiv(data, &settings); if (err < 0) return err; /* Undefined state now, best to leave disabled */ /* Trigger calibration */ err = regmap_write(data->regmap, SI544_REG_CONTROL, SI544_CONTROL_MS_ICAL2); if (err < 0) return err; /* Applying a new frequency can take up to 10ms */ usleep_range(10000, 12000); if (old_oe_state & SI544_OE_STATE_ODC_OE) si544_enable_output(data, true); return err; } static const struct clk_ops si544_clk_ops = { .prepare = si544_prepare, .unprepare = si544_unprepare, .is_prepared = si544_is_prepared, .recalc_rate = si544_recalc_rate, .round_rate = si544_round_rate, .set_rate = si544_set_rate, }; static bool si544_regmap_is_volatile(struct device *dev, unsigned int reg) { switch (reg) { case SI544_REG_CONTROL: case SI544_REG_FCAL_OVR: return true; default: return false; } } static const struct regmap_config si544_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_RBTREE, .max_register = SI544_REG_PAGE_SELECT, .volatile_reg = si544_regmap_is_volatile, }; static const struct i2c_device_id si544_id[] = { { "si544a", si544a }, { "si544b", si544b }, { "si544c", si544c }, { } }; MODULE_DEVICE_TABLE(i2c, si544_id); static int si544_probe(struct i2c_client *client) { struct clk_si544 *data; struct clk_init_data init; const struct i2c_device_id *id = i2c_match_id(si544_id, client); int err; data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; init.ops = &si544_clk_ops; init.flags = 0; init.num_parents = 0; data->hw.init = &init; data->i2c_client = client; data->speed_grade = id->driver_data; if (of_property_read_string(client->dev.of_node, "clock-output-names", &init.name)) init.name = client->dev.of_node->name; data->regmap = devm_regmap_init_i2c(client, &si544_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); i2c_set_clientdata(client, data); /* Select page 0, just to be sure, there appear to be no more */ err = regmap_write(data->regmap, SI544_REG_PAGE_SELECT, 0); if (err < 0) return err; err = devm_clk_hw_register(&client->dev, &data->hw); if (err) { dev_err(&client->dev, "clock registration failed\n"); return err; } err = devm_of_clk_add_hw_provider(&client->dev, of_clk_hw_simple_get, &data->hw); if (err) { dev_err(&client->dev, "unable to add clk provider\n"); return err; } return 0; } static const struct of_device_id clk_si544_of_match[] = { { .compatible = "silabs,si544a" }, { .compatible = "silabs,si544b" }, { .compatible = "silabs,si544c" }, { }, }; MODULE_DEVICE_TABLE(of, clk_si544_of_match); static struct i2c_driver si544_driver = { .driver = { .name = "si544", .of_match_table = clk_si544_of_match, }, .probe_new = si544_probe, .id_table = si544_id, }; module_i2c_driver(si544_driver); MODULE_AUTHOR("Mike Looijmans "); MODULE_DESCRIPTION("Si544 driver"); MODULE_LICENSE("GPL");