// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include "clk-alpha-pll.h" #include "common.h" #define PLL_MODE(p) ((p)->offset + 0x0) # define PLL_OUTCTRL BIT(0) # define PLL_BYPASSNL BIT(1) # define PLL_RESET_N BIT(2) # define PLL_OFFLINE_REQ BIT(7) # define PLL_LOCK_COUNT_SHIFT 8 # define PLL_LOCK_COUNT_MASK 0x3f # define PLL_BIAS_COUNT_SHIFT 14 # define PLL_BIAS_COUNT_MASK 0x3f # define PLL_VOTE_FSM_ENA BIT(20) # define PLL_FSM_ENA BIT(20) # define PLL_VOTE_FSM_RESET BIT(21) # define PLL_UPDATE BIT(22) # define PLL_UPDATE_BYPASS BIT(23) # define PLL_OFFLINE_ACK BIT(28) # define ALPHA_PLL_ACK_LATCH BIT(29) # define PLL_ACTIVE_FLAG BIT(30) # define PLL_LOCK_DET BIT(31) #define PLL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_L_VAL]) #define PLL_CAL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL]) #define PLL_ALPHA_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL]) #define PLL_ALPHA_VAL_U(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U]) #define PLL_USER_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL]) # define PLL_POST_DIV_SHIFT 8 # define PLL_POST_DIV_MASK(p) GENMASK((p)->width, 0) # define PLL_ALPHA_EN BIT(24) # define PLL_ALPHA_MODE BIT(25) # define PLL_VCO_SHIFT 20 # define PLL_VCO_MASK 0x3 #define PLL_USER_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U]) #define PLL_USER_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1]) #define PLL_CONFIG_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL]) #define PLL_CONFIG_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U]) #define PLL_CONFIG_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1]) #define PLL_TEST_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL]) #define PLL_TEST_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U]) #define PLL_STATUS(p) ((p)->offset + (p)->regs[PLL_OFF_STATUS]) #define PLL_OPMODE(p) ((p)->offset + (p)->regs[PLL_OFF_OPMODE]) #define PLL_FRAC(p) ((p)->offset + (p)->regs[PLL_OFF_FRAC]) #define PLL_CAL_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_VAL]) const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = { [CLK_ALPHA_PLL_TYPE_DEFAULT] = { [PLL_OFF_L_VAL] = 0x04, [PLL_OFF_ALPHA_VAL] = 0x08, [PLL_OFF_ALPHA_VAL_U] = 0x0c, [PLL_OFF_USER_CTL] = 0x10, [PLL_OFF_USER_CTL_U] = 0x14, [PLL_OFF_CONFIG_CTL] = 0x18, [PLL_OFF_TEST_CTL] = 0x1c, [PLL_OFF_TEST_CTL_U] = 0x20, [PLL_OFF_STATUS] = 0x24, }, [CLK_ALPHA_PLL_TYPE_HUAYRA] = { [PLL_OFF_L_VAL] = 0x04, [PLL_OFF_ALPHA_VAL] = 0x08, [PLL_OFF_USER_CTL] = 0x10, [PLL_OFF_CONFIG_CTL] = 0x14, [PLL_OFF_CONFIG_CTL_U] = 0x18, [PLL_OFF_TEST_CTL] = 0x1c, [PLL_OFF_TEST_CTL_U] = 0x20, [PLL_OFF_STATUS] = 0x24, }, [CLK_ALPHA_PLL_TYPE_BRAMMO] = { [PLL_OFF_L_VAL] = 0x04, [PLL_OFF_ALPHA_VAL] = 0x08, [PLL_OFF_ALPHA_VAL_U] = 0x0c, [PLL_OFF_USER_CTL] = 0x10, [PLL_OFF_CONFIG_CTL] = 0x18, [PLL_OFF_TEST_CTL] = 0x1c, [PLL_OFF_STATUS] = 0x24, }, [CLK_ALPHA_PLL_TYPE_FABIA] = { [PLL_OFF_L_VAL] = 0x04, [PLL_OFF_USER_CTL] = 0x0c, [PLL_OFF_USER_CTL_U] = 0x10, [PLL_OFF_CONFIG_CTL] = 0x14, [PLL_OFF_CONFIG_CTL_U] = 0x18, [PLL_OFF_TEST_CTL] = 0x1c, [PLL_OFF_TEST_CTL_U] = 0x20, [PLL_OFF_STATUS] = 0x24, [PLL_OFF_OPMODE] = 0x2c, [PLL_OFF_FRAC] = 0x38, }, [CLK_ALPHA_PLL_TYPE_TRION] = { [PLL_OFF_L_VAL] = 0x04, [PLL_OFF_CAL_L_VAL] = 0x08, [PLL_OFF_USER_CTL] = 0x0c, [PLL_OFF_USER_CTL_U] = 0x10, [PLL_OFF_USER_CTL_U1] = 0x14, [PLL_OFF_CONFIG_CTL] = 0x18, [PLL_OFF_CONFIG_CTL_U] = 0x1c, [PLL_OFF_CONFIG_CTL_U1] = 0x20, [PLL_OFF_TEST_CTL] = 0x24, [PLL_OFF_TEST_CTL_U] = 0x28, [PLL_OFF_STATUS] = 0x30, [PLL_OFF_OPMODE] = 0x38, [PLL_OFF_ALPHA_VAL] = 0x40, [PLL_OFF_CAL_VAL] = 0x44, }, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_regs); /* * Even though 40 bits are present, use only 32 for ease of calculation. */ #define ALPHA_REG_BITWIDTH 40 #define ALPHA_REG_16BIT_WIDTH 16 #define ALPHA_BITWIDTH 32U #define ALPHA_SHIFT(w) min(w, ALPHA_BITWIDTH) #define PLL_HUAYRA_M_WIDTH 8 #define PLL_HUAYRA_M_SHIFT 8 #define PLL_HUAYRA_M_MASK 0xff #define PLL_HUAYRA_N_SHIFT 0 #define PLL_HUAYRA_N_MASK 0xff #define PLL_HUAYRA_ALPHA_WIDTH 16 #define FABIA_OPMODE_STANDBY 0x0 #define FABIA_OPMODE_RUN 0x1 #define FABIA_PLL_OUT_MASK 0x7 #define FABIA_PLL_RATE_MARGIN 500 #define TRION_PLL_STANDBY 0x0 #define TRION_PLL_RUN 0x1 #define TRION_PLL_OUT_MASK 0x7 #define pll_alpha_width(p) \ ((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ? \ ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH) #define pll_has_64bit_config(p) ((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4) #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \ struct clk_alpha_pll, clkr) #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \ struct clk_alpha_pll_postdiv, clkr) static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse, const char *action) { u32 val; int count; int ret; const char *name = clk_hw_get_name(&pll->clkr.hw); ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return ret; for (count = 100; count > 0; count--) { ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return ret; if (inverse && !(val & mask)) return 0; else if ((val & mask) == mask) return 0; udelay(1); } WARN(1, "%s failed to %s!\n", name, action); return -ETIMEDOUT; } #define wait_for_pll_enable_active(pll) \ wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable") #define wait_for_pll_enable_lock(pll) \ wait_for_pll(pll, PLL_LOCK_DET, 0, "enable") #define wait_for_pll_disable(pll) \ wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable") #define wait_for_pll_offline(pll) \ wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline") #define wait_for_pll_update(pll) \ wait_for_pll(pll, PLL_UPDATE, 1, "update") #define wait_for_pll_update_ack_set(pll) \ wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set") #define wait_for_pll_update_ack_clear(pll) \ wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear") void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, const struct alpha_pll_config *config) { u32 val, mask; regmap_write(regmap, PLL_L_VAL(pll), config->l); regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha); regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val); if (pll_has_64bit_config(pll)) regmap_write(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val); if (pll_alpha_width(pll) > 32) regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi); val = config->main_output_mask; val |= config->aux_output_mask; val |= config->aux2_output_mask; val |= config->early_output_mask; val |= config->pre_div_val; val |= config->post_div_val; val |= config->vco_val; val |= config->alpha_en_mask; val |= config->alpha_mode_mask; mask = config->main_output_mask; mask |= config->aux_output_mask; mask |= config->aux2_output_mask; mask |= config->early_output_mask; mask |= config->pre_div_mask; mask |= config->post_div_mask; mask |= config->vco_mask; regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val); if (pll->flags & SUPPORTS_FSM_MODE) qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0); } EXPORT_SYMBOL_GPL(clk_alpha_pll_configure); static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val; ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return ret; val |= PLL_FSM_ENA; if (pll->flags & SUPPORTS_OFFLINE_REQ) val &= ~PLL_OFFLINE_REQ; ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val); if (ret) return ret; /* Make sure enable request goes through before waiting for update */ mb(); return wait_for_pll_enable_active(pll); } static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val; ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return; if (pll->flags & SUPPORTS_OFFLINE_REQ) { ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OFFLINE_REQ, PLL_OFFLINE_REQ); if (ret) return; ret = wait_for_pll_offline(pll); if (ret) return; } /* Disable hwfsm */ ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_FSM_ENA, 0); if (ret) return; wait_for_pll_disable(pll); } static int pll_is_enabled(struct clk_hw *hw, u32 mask) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val; ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return ret; return !!(val & mask); } static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw) { return pll_is_enabled(hw, PLL_ACTIVE_FLAG); } static int clk_alpha_pll_is_enabled(struct clk_hw *hw) { return pll_is_enabled(hw, PLL_LOCK_DET); } static int clk_alpha_pll_enable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, mask; mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL; ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return ret; /* If in FSM mode, just vote for it */ if (val & PLL_VOTE_FSM_ENA) { ret = clk_enable_regmap(hw); if (ret) return ret; return wait_for_pll_enable_active(pll); } /* Skip if already enabled */ if ((val & mask) == mask) return 0; ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_BYPASSNL, PLL_BYPASSNL); if (ret) return ret; /* * H/W requires a 5us delay between disabling the bypass and * de-asserting the reset. */ mb(); udelay(5); ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); if (ret) return ret; ret = wait_for_pll_enable_lock(pll); if (ret) return ret; ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL); /* Ensure that the write above goes through before returning. */ mb(); return ret; } static void clk_alpha_pll_disable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, mask; ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return; /* If in FSM mode, just unvote it */ if (val & PLL_VOTE_FSM_ENA) { clk_disable_regmap(hw); return; } mask = PLL_OUTCTRL; regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0); /* Delay of 2 output clock ticks required until output is disabled */ mb(); udelay(1); mask = PLL_RESET_N | PLL_BYPASSNL; regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0); } static unsigned long alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width) { return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width)); } static unsigned long alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a, u32 alpha_width) { u64 remainder; u64 quotient; quotient = rate; remainder = do_div(quotient, prate); *l = quotient; if (!remainder) { *a = 0; return rate; } /* Upper ALPHA_BITWIDTH bits of Alpha */ quotient = remainder << ALPHA_SHIFT(alpha_width); remainder = do_div(quotient, prate); if (remainder) quotient++; *a = quotient; return alpha_pll_calc_rate(prate, *l, *a, alpha_width); } static const struct pll_vco * alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate) { const struct pll_vco *v = pll->vco_table; const struct pll_vco *end = v + pll->num_vco; for (; v < end; v++) if (rate >= v->min_freq && rate <= v->max_freq) return v; return NULL; } static unsigned long clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u32 l, low, high, ctl; u64 a = 0, prate = parent_rate; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 alpha_width = pll_alpha_width(pll); regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l); regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); if (ctl & PLL_ALPHA_EN) { regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low); if (alpha_width > 32) { regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), &high); a = (u64)high << 32 | low; } else { a = low & GENMASK(alpha_width - 1, 0); } if (alpha_width > ALPHA_BITWIDTH) a >>= alpha_width - ALPHA_BITWIDTH; } return alpha_pll_calc_rate(prate, l, a, alpha_width); } static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll) { int ret; u32 mode; regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode); /* Latch the input to the PLL */ regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, PLL_UPDATE); /* Wait for 2 reference cycle before checking ACK bit */ udelay(1); /* * PLL will latch the new L, Alpha and freq control word. * PLL will respond by raising PLL_ACK_LATCH output when new programming * has been latched in and PLL is being updated. When * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared * automatically by hardware when PLL_ACK_LATCH is asserted by PLL. */ if (mode & PLL_UPDATE_BYPASS) { ret = wait_for_pll_update_ack_set(pll); if (ret) return ret; regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0); } else { ret = wait_for_pll_update(pll); if (ret) return ret; } ret = wait_for_pll_update_ack_clear(pll); if (ret) return ret; /* Wait for PLL output to stabilize */ udelay(10); return 0; } static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll, int (*is_enabled)(struct clk_hw *)) { if (!is_enabled(&pll->clkr.hw) || !(pll->flags & SUPPORTS_DYNAMIC_UPDATE)) return 0; return __clk_alpha_pll_update_latch(pll); } static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate, int (*is_enabled)(struct clk_hw *)) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); const struct pll_vco *vco; u32 l, alpha_width = pll_alpha_width(pll); u64 a; rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width); vco = alpha_pll_find_vco(pll, rate); if (pll->vco_table && !vco) { pr_err("alpha pll not in a valid vco range\n"); return -EINVAL; } regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); if (alpha_width > ALPHA_BITWIDTH) a <<= alpha_width - ALPHA_BITWIDTH; if (alpha_width > 32) regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32); regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a); if (vco) { regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_VCO_MASK << PLL_VCO_SHIFT, vco->val << PLL_VCO_SHIFT); } regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_ALPHA_EN, PLL_ALPHA_EN); return clk_alpha_pll_update_latch(pll, is_enabled); } static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { return __clk_alpha_pll_set_rate(hw, rate, prate, clk_alpha_pll_is_enabled); } static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { return __clk_alpha_pll_set_rate(hw, rate, prate, clk_alpha_pll_hwfsm_is_enabled); } static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l, alpha_width = pll_alpha_width(pll); u64 a; unsigned long min_freq, max_freq; rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width); if (!pll->vco_table || alpha_pll_find_vco(pll, rate)) return rate; min_freq = pll->vco_table[0].min_freq; max_freq = pll->vco_table[pll->num_vco - 1].max_freq; return clamp(rate, min_freq, max_freq); } static unsigned long alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a) { /* * a contains 16 bit alpha_val in two’s compliment number in the range * of [-0.5, 0.5). */ if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1)) l -= 1; return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH); } static unsigned long alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u32 *a) { u64 remainder; u64 quotient; quotient = rate; remainder = do_div(quotient, prate); *l = quotient; if (!remainder) { *a = 0; return rate; } quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH; remainder = do_div(quotient, prate); if (remainder) quotient++; /* * alpha_val should be in two’s compliment number in the range * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value * since alpha value will be subtracted in this case. */ if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1)) *l += 1; *a = quotient; return alpha_huayra_pll_calc_rate(prate, *l, *a); } static unsigned long alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u64 rate = parent_rate, tmp; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l, alpha = 0, ctl, alpha_m, alpha_n; regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l); regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); if (ctl & PLL_ALPHA_EN) { regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha); /* * Depending upon alpha_mode, it can be treated as M/N value or * as a two’s compliment number. When alpha_mode=1, * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N * * Fout=FIN*(L+(M/N)) * * M is a signed number (-128 to 127) and N is unsigned * (0 to 255). M/N has to be within +/-0.5. * * When alpha_mode=0, it is a two’s compliment number in the * range [-0.5, 0.5). * * Fout=FIN*(L+(alpha_val)/2^16) * * where alpha_val is two’s compliment number. */ if (!(ctl & PLL_ALPHA_MODE)) return alpha_huayra_pll_calc_rate(rate, l, alpha); alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK; alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK; rate *= l; tmp = parent_rate; if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) { alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m; tmp *= alpha_m; do_div(tmp, alpha_n); rate -= tmp; } else { tmp *= alpha_m; do_div(tmp, alpha_n); rate += tmp; } return rate; } return alpha_huayra_pll_calc_rate(rate, l, alpha); } static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l, a, ctl, cur_alpha = 0; rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a); regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); if (ctl & PLL_ALPHA_EN) regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha); /* * Huayra PLL supports PLL dynamic programming. User can change L_VAL, * without having to go through the power on sequence. */ if (clk_alpha_pll_is_enabled(hw)) { if (cur_alpha != a) { pr_err("clock needs to be gated %s\n", clk_hw_get_name(hw)); return -EBUSY; } regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); /* Ensure that the write above goes to detect L val change. */ mb(); return wait_for_pll_enable_lock(pll); } regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a); if (a == 0) regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_ALPHA_EN, 0x0); else regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN); return 0; } static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { u32 l, a; return alpha_huayra_pll_round_rate(rate, *prate, &l, &a); } static int trion_pll_is_enabled(struct clk_alpha_pll *pll, struct regmap *regmap) { u32 mode_regval, opmode_regval; int ret; ret = regmap_read(regmap, PLL_MODE(pll), &mode_regval); ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_regval); if (ret) return 0; return ((opmode_regval & TRION_PLL_RUN) && (mode_regval & PLL_OUTCTRL)); } static int clk_trion_pll_is_enabled(struct clk_hw *hw) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); return trion_pll_is_enabled(pll, pll->clkr.regmap); } static int clk_trion_pll_enable(struct clk_hw *hw) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); struct regmap *regmap = pll->clkr.regmap; u32 val; int ret; ret = regmap_read(regmap, PLL_MODE(pll), &val); if (ret) return ret; /* If in FSM mode, just vote for it */ if (val & PLL_VOTE_FSM_ENA) { ret = clk_enable_regmap(hw); if (ret) return ret; return wait_for_pll_enable_active(pll); } /* Set operation mode to RUN */ regmap_write(regmap, PLL_OPMODE(pll), TRION_PLL_RUN); ret = wait_for_pll_enable_lock(pll); if (ret) return ret; /* Enable the PLL outputs */ ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), TRION_PLL_OUT_MASK, TRION_PLL_OUT_MASK); if (ret) return ret; /* Enable the global PLL outputs */ return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL); } static void clk_trion_pll_disable(struct clk_hw *hw) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); struct regmap *regmap = pll->clkr.regmap; u32 val; int ret; ret = regmap_read(regmap, PLL_MODE(pll), &val); if (ret) return; /* If in FSM mode, just unvote it */ if (val & PLL_VOTE_FSM_ENA) { clk_disable_regmap(hw); return; } /* Disable the global PLL output */ ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); if (ret) return; /* Disable the PLL outputs */ ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), TRION_PLL_OUT_MASK, 0); if (ret) return; /* Place the PLL mode in STANDBY */ regmap_write(regmap, PLL_OPMODE(pll), TRION_PLL_STANDBY); regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); } static unsigned long clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); struct regmap *regmap = pll->clkr.regmap; u32 l, frac; u64 prate = parent_rate; regmap_read(regmap, PLL_L_VAL(pll), &l); regmap_read(regmap, PLL_ALPHA_VAL(pll), &frac); return alpha_pll_calc_rate(prate, l, frac, ALPHA_REG_16BIT_WIDTH); } static long clk_trion_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); unsigned long min_freq, max_freq; u32 l; u64 a; rate = alpha_pll_round_rate(rate, *prate, &l, &a, ALPHA_REG_16BIT_WIDTH); if (!pll->vco_table || alpha_pll_find_vco(pll, rate)) return rate; min_freq = pll->vco_table[0].min_freq; max_freq = pll->vco_table[pll->num_vco - 1].max_freq; return clamp(rate, min_freq, max_freq); } const struct clk_ops clk_alpha_pll_ops = { .enable = clk_alpha_pll_enable, .disable = clk_alpha_pll_disable, .is_enabled = clk_alpha_pll_is_enabled, .recalc_rate = clk_alpha_pll_recalc_rate, .round_rate = clk_alpha_pll_round_rate, .set_rate = clk_alpha_pll_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_ops); const struct clk_ops clk_alpha_pll_huayra_ops = { .enable = clk_alpha_pll_enable, .disable = clk_alpha_pll_disable, .is_enabled = clk_alpha_pll_is_enabled, .recalc_rate = alpha_pll_huayra_recalc_rate, .round_rate = alpha_pll_huayra_round_rate, .set_rate = alpha_pll_huayra_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops); const struct clk_ops clk_alpha_pll_hwfsm_ops = { .enable = clk_alpha_pll_hwfsm_enable, .disable = clk_alpha_pll_hwfsm_disable, .is_enabled = clk_alpha_pll_hwfsm_is_enabled, .recalc_rate = clk_alpha_pll_recalc_rate, .round_rate = clk_alpha_pll_round_rate, .set_rate = clk_alpha_pll_hwfsm_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops); const struct clk_ops clk_trion_fixed_pll_ops = { .enable = clk_trion_pll_enable, .disable = clk_trion_pll_disable, .is_enabled = clk_trion_pll_is_enabled, .recalc_rate = clk_trion_pll_recalc_rate, .round_rate = clk_trion_pll_round_rate, }; EXPORT_SYMBOL_GPL(clk_trion_fixed_pll_ops); static unsigned long clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); u32 ctl; regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); ctl >>= PLL_POST_DIV_SHIFT; ctl &= PLL_POST_DIV_MASK(pll); return parent_rate >> fls(ctl); } static const struct clk_div_table clk_alpha_div_table[] = { { 0x0, 1 }, { 0x1, 2 }, { 0x3, 4 }, { 0x7, 8 }, { 0xf, 16 }, { } }; static const struct clk_div_table clk_alpha_2bit_div_table[] = { { 0x0, 1 }, { 0x1, 2 }, { 0x3, 4 }, { } }; static long clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); const struct clk_div_table *table; if (pll->width == 2) table = clk_alpha_2bit_div_table; else table = clk_alpha_div_table; return divider_round_rate(hw, rate, prate, table, pll->width, CLK_DIVIDER_POWER_OF_TWO); } static long clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); u32 ctl, div; regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); ctl >>= PLL_POST_DIV_SHIFT; ctl &= BIT(pll->width) - 1; div = 1 << fls(ctl); if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) *prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate); return DIV_ROUND_UP_ULL((u64)*prate, div); } static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); int div; /* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */ div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1; return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT, div << PLL_POST_DIV_SHIFT); } const struct clk_ops clk_alpha_pll_postdiv_ops = { .recalc_rate = clk_alpha_pll_postdiv_recalc_rate, .round_rate = clk_alpha_pll_postdiv_round_rate, .set_rate = clk_alpha_pll_postdiv_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops); const struct clk_ops clk_alpha_pll_postdiv_ro_ops = { .round_rate = clk_alpha_pll_postdiv_round_ro_rate, .recalc_rate = clk_alpha_pll_postdiv_recalc_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops); void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, const struct alpha_pll_config *config) { u32 val, mask; if (config->l) regmap_write(regmap, PLL_L_VAL(pll), config->l); if (config->alpha) regmap_write(regmap, PLL_FRAC(pll), config->alpha); if (config->config_ctl_val) regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val); if (config->post_div_mask) { mask = config->post_div_mask; val = config->post_div_val; regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val); } regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS, PLL_UPDATE_BYPASS); regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); } EXPORT_SYMBOL_GPL(clk_fabia_pll_configure); static int alpha_pll_fabia_enable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, opmode_val; struct regmap *regmap = pll->clkr.regmap; ret = regmap_read(regmap, PLL_MODE(pll), &val); if (ret) return ret; /* If in FSM mode, just vote for it */ if (val & PLL_VOTE_FSM_ENA) { ret = clk_enable_regmap(hw); if (ret) return ret; return wait_for_pll_enable_active(pll); } ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val); if (ret) return ret; /* Skip If PLL is already running */ if ((opmode_val & FABIA_OPMODE_RUN) && (val & PLL_OUTCTRL)) return 0; ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); if (ret) return ret; ret = regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_STANDBY); if (ret) return ret; ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); if (ret) return ret; ret = regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_RUN); if (ret) return ret; ret = wait_for_pll_enable_lock(pll); if (ret) return ret; ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), FABIA_PLL_OUT_MASK, FABIA_PLL_OUT_MASK); if (ret) return ret; return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL); } static void alpha_pll_fabia_disable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val; struct regmap *regmap = pll->clkr.regmap; ret = regmap_read(regmap, PLL_MODE(pll), &val); if (ret) return; /* If in FSM mode, just unvote it */ if (val & PLL_FSM_ENA) { clk_disable_regmap(hw); return; } ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); if (ret) return; /* Disable main outputs */ ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), FABIA_PLL_OUT_MASK, 0); if (ret) return; /* Place the PLL in STANDBY */ regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_STANDBY); } static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l, frac, alpha_width = pll_alpha_width(pll); regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l); regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac); return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width); } static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, l, alpha_width = pll_alpha_width(pll); u64 a; unsigned long rrate; int ret = 0; ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return ret; rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width); /* * Due to limited number of bits for fractional rate programming, the * rounded up rate could be marginally higher than the requested rate. */ if (rrate > (rate + FABIA_PLL_RATE_MARGIN) || rrate < rate) { pr_err("Call set rate on the PLL with rounded rates!\n"); return -EINVAL; } regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a); return __clk_alpha_pll_update_latch(pll); } const struct clk_ops clk_alpha_pll_fabia_ops = { .enable = alpha_pll_fabia_enable, .disable = alpha_pll_fabia_disable, .is_enabled = clk_alpha_pll_is_enabled, .set_rate = alpha_pll_fabia_set_rate, .recalc_rate = alpha_pll_fabia_recalc_rate, .round_rate = clk_alpha_pll_round_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops); const struct clk_ops clk_alpha_pll_fixed_fabia_ops = { .enable = alpha_pll_fabia_enable, .disable = alpha_pll_fabia_disable, .is_enabled = clk_alpha_pll_is_enabled, .recalc_rate = alpha_pll_fabia_recalc_rate, .round_rate = clk_alpha_pll_round_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops); static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); u32 i, div = 1, val; int ret; ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val); if (ret) return ret; val >>= pll->post_div_shift; val &= BIT(pll->width) - 1; for (i = 0; i < pll->num_post_div; i++) { if (pll->post_div_table[i].val == val) { div = pll->post_div_table[i].div; break; } } return (parent_rate / div); } static unsigned long clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); struct regmap *regmap = pll->clkr.regmap; u32 i, div = 1, val; regmap_read(regmap, PLL_USER_CTL(pll), &val); val >>= pll->post_div_shift; val &= PLL_POST_DIV_MASK(pll); for (i = 0; i < pll->num_post_div; i++) { if (pll->post_div_table[i].val == val) { div = pll->post_div_table[i].div; break; } } return (parent_rate / div); } static long clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); return divider_round_rate(hw, rate, prate, pll->post_div_table, pll->width, CLK_DIVIDER_ROUND_CLOSEST); }; static int clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); struct regmap *regmap = pll->clkr.regmap; int i, val = 0, div; div = DIV_ROUND_UP_ULL(parent_rate, rate); for (i = 0; i < pll->num_post_div; i++) { if (pll->post_div_table[i].div == div) { val = pll->post_div_table[i].val; break; } } return regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT, val << PLL_POST_DIV_SHIFT); } const struct clk_ops clk_trion_pll_postdiv_ops = { .recalc_rate = clk_trion_pll_postdiv_recalc_rate, .round_rate = clk_trion_pll_postdiv_round_rate, .set_rate = clk_trion_pll_postdiv_set_rate, }; EXPORT_SYMBOL_GPL(clk_trion_pll_postdiv_ops); static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); return divider_round_rate(hw, rate, prate, pll->post_div_table, pll->width, CLK_DIVIDER_ROUND_CLOSEST); } static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); int i, val = 0, div, ret; /* * If the PLL is in FSM mode, then treat set_rate callback as a * no-operation. */ ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); if (ret) return ret; if (val & PLL_VOTE_FSM_ENA) return 0; div = DIV_ROUND_UP_ULL(parent_rate, rate); for (i = 0; i < pll->num_post_div; i++) { if (pll->post_div_table[i].div == div) { val = pll->post_div_table[i].val; break; } } return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), (BIT(pll->width) - 1) << pll->post_div_shift, val << pll->post_div_shift); } const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = { .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate, .round_rate = clk_alpha_pll_postdiv_fabia_round_rate, .set_rate = clk_alpha_pll_postdiv_fabia_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);