/* * Copyright 2013 Emilio López * * Emilio López * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include "clk-factors.h" static DEFINE_SPINLOCK(clk_lock); /* Maximum number of parents our clocks have */ #define SUNXI_MAX_PARENTS 5 /** * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1 * PLL1 rate is calculated as follows * rate = (parent_rate * n * (k + 1) >> p) / (m + 1); * parent_rate is always 24Mhz */ static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p) { u8 div; /* Normalize value to a 6M multiple */ div = *freq / 6000000; *freq = 6000000 * div; /* we were called to round the frequency, we can now return */ if (n == NULL) return; /* m is always zero for pll1 */ *m = 0; /* k is 1 only on these cases */ if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000) *k = 1; else *k = 0; /* p will be 3 for divs under 10 */ if (div < 10) *p = 3; /* p will be 2 for divs between 10 - 20 and odd divs under 32 */ else if (div < 20 || (div < 32 && (div & 1))) *p = 2; /* p will be 1 for even divs under 32, divs under 40 and odd pairs * of divs between 40-62 */ else if (div < 40 || (div < 64 && (div & 2))) *p = 1; /* any other entries have p = 0 */ else *p = 0; /* calculate a suitable n based on k and p */ div <<= *p; div /= (*k + 1); *n = div / 4; } /** * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1 * PLL1 rate is calculated as follows * rate = parent_rate * (n + 1) * (k + 1) / (m + 1); * parent_rate should always be 24MHz */ static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p) { /* * We can operate only on MHz, this will make our life easier * later. */ u32 freq_mhz = *freq / 1000000; u32 parent_freq_mhz = parent_rate / 1000000; /* * Round down the frequency to the closest multiple of either * 6 or 16 */ u32 round_freq_6 = round_down(freq_mhz, 6); u32 round_freq_16 = round_down(freq_mhz, 16); if (round_freq_6 > round_freq_16) freq_mhz = round_freq_6; else freq_mhz = round_freq_16; *freq = freq_mhz * 1000000; /* * If the factors pointer are null, we were just called to * round down the frequency. * Exit. */ if (n == NULL) return; /* If the frequency is a multiple of 32 MHz, k is always 3 */ if (!(freq_mhz % 32)) *k = 3; /* If the frequency is a multiple of 9 MHz, k is always 2 */ else if (!(freq_mhz % 9)) *k = 2; /* If the frequency is a multiple of 8 MHz, k is always 1 */ else if (!(freq_mhz % 8)) *k = 1; /* Otherwise, we don't use the k factor */ else *k = 0; /* * If the frequency is a multiple of 2 but not a multiple of * 3, m is 3. This is the first time we use 6 here, yet we * will use it on several other places. * We use this number because it's the lowest frequency we can * generate (with n = 0, k = 0, m = 3), so every other frequency * somehow relates to this frequency. */ if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4) *m = 2; /* * If the frequency is a multiple of 6MHz, but the factor is * odd, m will be 3 */ else if ((freq_mhz / 6) & 1) *m = 3; /* Otherwise, we end up with m = 1 */ else *m = 1; /* Calculate n thanks to the above factors we already got */ *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1; /* * If n end up being outbound, and that we can still decrease * m, do it. */ if ((*n + 1) > 31 && (*m + 1) > 1) { *n = (*n + 1) / 2 - 1; *m = (*m + 1) / 2 - 1; } } /** * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1 * PLL1 rate is calculated as follows * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1); * parent_rate is always 24Mhz */ static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p) { u8 div; /* Normalize value to a 6M multiple */ div = *freq / 6000000; *freq = 6000000 * div; /* we were called to round the frequency, we can now return */ if (n == NULL) return; /* m is always zero for pll1 */ *m = 0; /* k is 1 only on these cases */ if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000) *k = 1; else *k = 0; /* p will be 2 for divs under 20 and odd divs under 32 */ if (div < 20 || (div < 32 && (div & 1))) *p = 2; /* p will be 1 for even divs under 32, divs under 40 and odd pairs * of divs between 40-62 */ else if (div < 40 || (div < 64 && (div & 2))) *p = 1; /* any other entries have p = 0 */ else *p = 0; /* calculate a suitable n based on k and p */ div <<= *p; div /= (*k + 1); *n = div / 4 - 1; } /** * sun4i_get_pll5_factors() - calculates n, k factors for PLL5 * PLL5 rate is calculated as follows * rate = parent_rate * n * (k + 1) * parent_rate is always 24Mhz */ static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p) { u8 div; /* Normalize value to a parent_rate multiple (24M) */ div = *freq / parent_rate; *freq = parent_rate * div; /* we were called to round the frequency, we can now return */ if (n == NULL) return; if (div < 31) *k = 0; else if (div / 2 < 31) *k = 1; else if (div / 3 < 31) *k = 2; else *k = 3; *n = DIV_ROUND_UP(div, (*k+1)); } /** * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2 * PLL6x2 rate is calculated as follows * rate = parent_rate * (n + 1) * (k + 1) * parent_rate is always 24Mhz */ static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p) { u8 div; /* Normalize value to a parent_rate multiple (24M) */ div = *freq / parent_rate; *freq = parent_rate * div; /* we were called to round the frequency, we can now return */ if (n == NULL) return; *k = div / 32; if (*k > 3) *k = 3; *n = DIV_ROUND_UP(div, (*k+1)) - 1; } /** * sun4i_get_apb1_factors() - calculates m, p factors for APB1 * APB1 rate is calculated as follows * rate = (parent_rate >> p) / (m + 1); */ static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p) { u8 calcm, calcp; if (parent_rate < *freq) *freq = parent_rate; parent_rate = DIV_ROUND_UP(parent_rate, *freq); /* Invalid rate! */ if (parent_rate > 32) return; if (parent_rate <= 4) calcp = 0; else if (parent_rate <= 8) calcp = 1; else if (parent_rate <= 16) calcp = 2; else calcp = 3; calcm = (parent_rate >> calcp) - 1; *freq = (parent_rate >> calcp) / (calcm + 1); /* we were called to round the frequency, we can now return */ if (n == NULL) return; *m = calcm; *p = calcp; } /** * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B * CLK_OUT rate is calculated as follows * rate = (parent_rate >> p) / (m + 1); */ static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p) { u8 div, calcm, calcp; /* These clocks can only divide, so we will never be able to achieve * frequencies higher than the parent frequency */ if (*freq > parent_rate) *freq = parent_rate; div = DIV_ROUND_UP(parent_rate, *freq); if (div < 32) calcp = 0; else if (div / 2 < 32) calcp = 1; else if (div / 4 < 32) calcp = 2; else calcp = 3; calcm = DIV_ROUND_UP(div, 1 << calcp); *freq = (parent_rate >> calcp) / calcm; /* we were called to round the frequency, we can now return */ if (n == NULL) return; *m = calcm - 1; *p = calcp; } /** * clk_sunxi_mmc_phase_control() - configures MMC clock phase control */ void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output) { #define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw) #define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw) struct clk_hw *hw = __clk_get_hw(clk); struct clk_composite *composite = to_clk_composite(hw); struct clk_hw *rate_hw = composite->rate_hw; struct clk_factors *factors = to_clk_factors(rate_hw); unsigned long flags = 0; u32 reg; if (factors->lock) spin_lock_irqsave(factors->lock, flags); reg = readl(factors->reg); /* set sample clock phase control */ reg &= ~(0x7 << 20); reg |= ((sample & 0x7) << 20); /* set output clock phase control */ reg &= ~(0x7 << 8); reg |= ((output & 0x7) << 8); writel(reg, factors->reg); if (factors->lock) spin_unlock_irqrestore(factors->lock, flags); } EXPORT_SYMBOL(clk_sunxi_mmc_phase_control); /** * sunxi_factors_clk_setup() - Setup function for factor clocks */ static struct clk_factors_config sun4i_pll1_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, .mshift = 0, .mwidth = 2, .pshift = 16, .pwidth = 2, }; static struct clk_factors_config sun6i_a31_pll1_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, .mshift = 0, .mwidth = 2, }; static struct clk_factors_config sun8i_a23_pll1_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, .mshift = 0, .mwidth = 2, .pshift = 16, .pwidth = 2, .n_start = 1, }; static struct clk_factors_config sun4i_pll5_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, }; static struct clk_factors_config sun6i_a31_pll6_config = { .nshift = 8, .nwidth = 5, .kshift = 4, .kwidth = 2, .n_start = 1, }; static struct clk_factors_config sun4i_apb1_config = { .mshift = 0, .mwidth = 5, .pshift = 16, .pwidth = 2, }; /* user manual says "n" but it's really "p" */ static struct clk_factors_config sun7i_a20_out_config = { .mshift = 8, .mwidth = 5, .pshift = 20, .pwidth = 2, }; static const struct factors_data sun4i_pll1_data __initconst = { .enable = 31, .table = &sun4i_pll1_config, .getter = sun4i_get_pll1_factors, }; static const struct factors_data sun6i_a31_pll1_data __initconst = { .enable = 31, .table = &sun6i_a31_pll1_config, .getter = sun6i_a31_get_pll1_factors, }; static const struct factors_data sun8i_a23_pll1_data __initconst = { .enable = 31, .table = &sun8i_a23_pll1_config, .getter = sun8i_a23_get_pll1_factors, }; static const struct factors_data sun7i_a20_pll4_data __initconst = { .enable = 31, .table = &sun4i_pll5_config, .getter = sun4i_get_pll5_factors, }; static const struct factors_data sun4i_pll5_data __initconst = { .enable = 31, .table = &sun4i_pll5_config, .getter = sun4i_get_pll5_factors, .name = "pll5", }; static const struct factors_data sun4i_pll6_data __initconst = { .enable = 31, .table = &sun4i_pll5_config, .getter = sun4i_get_pll5_factors, .name = "pll6", }; static const struct factors_data sun6i_a31_pll6_data __initconst = { .enable = 31, .table = &sun6i_a31_pll6_config, .getter = sun6i_a31_get_pll6_factors, .name = "pll6x2", }; static const struct factors_data sun4i_apb1_data __initconst = { .mux = 24, .muxmask = BIT(1) | BIT(0), .table = &sun4i_apb1_config, .getter = sun4i_get_apb1_factors, }; static const struct factors_data sun7i_a20_out_data __initconst = { .enable = 31, .mux = 24, .muxmask = BIT(1) | BIT(0), .table = &sun7i_a20_out_config, .getter = sun7i_a20_get_out_factors, }; static struct clk * __init sunxi_factors_clk_setup(struct device_node *node, const struct factors_data *data) { return sunxi_factors_register(node, data, &clk_lock); } /** * sunxi_mux_clk_setup() - Setup function for muxes */ #define SUNXI_MUX_GATE_WIDTH 2 struct mux_data { u8 shift; }; static const struct mux_data sun4i_cpu_mux_data __initconst = { .shift = 16, }; static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = { .shift = 12, }; static void __init sunxi_mux_clk_setup(struct device_node *node, struct mux_data *data) { struct clk *clk; const char *clk_name = node->name; const char *parents[SUNXI_MAX_PARENTS]; void __iomem *reg; int i = 0; reg = of_iomap(node, 0); while (i < SUNXI_MAX_PARENTS && (parents[i] = of_clk_get_parent_name(node, i)) != NULL) i++; of_property_read_string(node, "clock-output-names", &clk_name); clk = clk_register_mux(NULL, clk_name, parents, i, CLK_SET_RATE_NO_REPARENT, reg, data->shift, SUNXI_MUX_GATE_WIDTH, 0, &clk_lock); if (clk) { of_clk_add_provider(node, of_clk_src_simple_get, clk); clk_register_clkdev(clk, clk_name, NULL); } } /** * sunxi_divider_clk_setup() - Setup function for simple divider clocks */ struct div_data { u8 shift; u8 pow; u8 width; const struct clk_div_table *table; }; static const struct div_data sun4i_axi_data __initconst = { .shift = 0, .pow = 0, .width = 2, }; static const struct clk_div_table sun8i_a23_axi_table[] __initconst = { { .val = 0, .div = 1 }, { .val = 1, .div = 2 }, { .val = 2, .div = 3 }, { .val = 3, .div = 4 }, { .val = 4, .div = 4 }, { .val = 5, .div = 4 }, { .val = 6, .div = 4 }, { .val = 7, .div = 4 }, { } /* sentinel */ }; static const struct div_data sun8i_a23_axi_data __initconst = { .width = 3, .table = sun8i_a23_axi_table, }; static const struct div_data sun4i_ahb_data __initconst = { .shift = 4, .pow = 1, .width = 2, }; static const struct clk_div_table sun4i_apb0_table[] __initconst = { { .val = 0, .div = 2 }, { .val = 1, .div = 2 }, { .val = 2, .div = 4 }, { .val = 3, .div = 8 }, { } /* sentinel */ }; static const struct div_data sun4i_apb0_data __initconst = { .shift = 8, .pow = 1, .width = 2, .table = sun4i_apb0_table, }; static void __init sunxi_divider_clk_setup(struct device_node *node, struct div_data *data) { struct clk *clk; const char *clk_name = node->name; const char *clk_parent; void __iomem *reg; reg = of_iomap(node, 0); clk_parent = of_clk_get_parent_name(node, 0); of_property_read_string(node, "clock-output-names", &clk_name); clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0, reg, data->shift, data->width, data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0, data->table, &clk_lock); if (clk) { of_clk_add_provider(node, of_clk_src_simple_get, clk); clk_register_clkdev(clk, clk_name, NULL); } } /** * sunxi_gates_reset... - reset bits in leaf gate clk registers handling */ struct gates_reset_data { void __iomem *reg; spinlock_t *lock; struct reset_controller_dev rcdev; }; static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct gates_reset_data *data = container_of(rcdev, struct gates_reset_data, rcdev); unsigned long flags; u32 reg; spin_lock_irqsave(data->lock, flags); reg = readl(data->reg); writel(reg & ~BIT(id), data->reg); spin_unlock_irqrestore(data->lock, flags); return 0; } static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct gates_reset_data *data = container_of(rcdev, struct gates_reset_data, rcdev); unsigned long flags; u32 reg; spin_lock_irqsave(data->lock, flags); reg = readl(data->reg); writel(reg | BIT(id), data->reg); spin_unlock_irqrestore(data->lock, flags); return 0; } static struct reset_control_ops sunxi_gates_reset_ops = { .assert = sunxi_gates_reset_assert, .deassert = sunxi_gates_reset_deassert, }; /** * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks */ #define SUNXI_GATES_MAX_SIZE 64 struct gates_data { DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE); u32 reset_mask; }; static const struct gates_data sun4i_axi_gates_data __initconst = { .mask = {1}, }; static const struct gates_data sun4i_ahb_gates_data __initconst = { .mask = {0x7F77FFF, 0x14FB3F}, }; static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = { .mask = {0x147667e7, 0x185915}, }; static const struct gates_data sun5i_a13_ahb_gates_data __initconst = { .mask = {0x107067e7, 0x185111}, }; static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = { .mask = {0xEDFE7F62, 0x794F931}, }; static const struct gates_data sun7i_a20_ahb_gates_data __initconst = { .mask = { 0x12f77fff, 0x16ff3f }, }; static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = { .mask = {0x25386742, 0x2505111}, }; static const struct gates_data sun9i_a80_ahb0_gates_data __initconst = { .mask = {0xF5F12B}, }; static const struct gates_data sun9i_a80_ahb1_gates_data __initconst = { .mask = {0x1E20003}, }; static const struct gates_data sun9i_a80_ahb2_gates_data __initconst = { .mask = {0x9B7}, }; static const struct gates_data sun4i_apb0_gates_data __initconst = { .mask = {0x4EF}, }; static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = { .mask = {0x469}, }; static const struct gates_data sun5i_a13_apb0_gates_data __initconst = { .mask = {0x61}, }; static const struct gates_data sun7i_a20_apb0_gates_data __initconst = { .mask = { 0x4ff }, }; static const struct gates_data sun9i_a80_apb0_gates_data __initconst = { .mask = {0xEB822}, }; static const struct gates_data sun4i_apb1_gates_data __initconst = { .mask = {0xFF00F7}, }; static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = { .mask = {0xf0007}, }; static const struct gates_data sun5i_a13_apb1_gates_data __initconst = { .mask = {0xa0007}, }; static const struct gates_data sun6i_a31_apb1_gates_data __initconst = { .mask = {0x3031}, }; static const struct gates_data sun8i_a23_apb1_gates_data __initconst = { .mask = {0x3021}, }; static const struct gates_data sun6i_a31_apb2_gates_data __initconst = { .mask = {0x3F000F}, }; static const struct gates_data sun7i_a20_apb1_gates_data __initconst = { .mask = { 0xff80ff }, }; static const struct gates_data sun9i_a80_apb1_gates_data __initconst = { .mask = {0x3F001F}, }; static const struct gates_data sun8i_a23_apb2_gates_data __initconst = { .mask = {0x1F0007}, }; static const struct gates_data sun4i_a10_usb_gates_data __initconst = { .mask = {0x1C0}, .reset_mask = 0x07, }; static const struct gates_data sun5i_a13_usb_gates_data __initconst = { .mask = {0x140}, .reset_mask = 0x03, }; static const struct gates_data sun6i_a31_usb_gates_data __initconst = { .mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) }, .reset_mask = BIT(2) | BIT(1) | BIT(0), }; static void __init sunxi_gates_clk_setup(struct device_node *node, struct gates_data *data) { struct clk_onecell_data *clk_data; struct gates_reset_data *reset_data; const char *clk_parent; const char *clk_name; void __iomem *reg; int qty; int i = 0; int j = 0; reg = of_iomap(node, 0); clk_parent = of_clk_get_parent_name(node, 0); /* Worst-case size approximation and memory allocation */ qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE); clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL); if (!clk_data) return; clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL); if (!clk_data->clks) { kfree(clk_data); return; } for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) { of_property_read_string_index(node, "clock-output-names", j, &clk_name); clk_data->clks[i] = clk_register_gate(NULL, clk_name, clk_parent, 0, reg + 4 * (i/32), i % 32, 0, &clk_lock); WARN_ON(IS_ERR(clk_data->clks[i])); clk_register_clkdev(clk_data->clks[i], clk_name, NULL); j++; } /* Adjust to the real max */ clk_data->clk_num = i; of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); /* Register a reset controler for gates with reset bits */ if (data->reset_mask == 0) return; reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL); if (!reset_data) return; reset_data->reg = reg; reset_data->lock = &clk_lock; reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1; reset_data->rcdev.ops = &sunxi_gates_reset_ops; reset_data->rcdev.of_node = node; reset_controller_register(&reset_data->rcdev); } /** * sunxi_divs_clk_setup() helper data */ #define SUNXI_DIVS_MAX_QTY 2 #define SUNXI_DIVISOR_WIDTH 2 struct divs_data { const struct factors_data *factors; /* data for the factor clock */ int ndivs; /* number of children */ struct { u8 fixed; /* is it a fixed divisor? if not... */ struct clk_div_table *table; /* is it a table based divisor? */ u8 shift; /* otherwise it's a normal divisor with this shift */ u8 pow; /* is it power-of-two based? */ u8 gate; /* is it independently gateable? */ } div[SUNXI_DIVS_MAX_QTY]; }; static struct clk_div_table pll6_sata_tbl[] = { { .val = 0, .div = 6, }, { .val = 1, .div = 12, }, { .val = 2, .div = 18, }, { .val = 3, .div = 24, }, { } /* sentinel */ }; static const struct divs_data pll5_divs_data __initconst = { .factors = &sun4i_pll5_data, .ndivs = 2, .div = { { .shift = 0, .pow = 0, }, /* M, DDR */ { .shift = 16, .pow = 1, }, /* P, other */ } }; static const struct divs_data pll6_divs_data __initconst = { .factors = &sun4i_pll6_data, .ndivs = 2, .div = { { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */ { .fixed = 2 }, /* P, other */ } }; static const struct divs_data sun6i_a31_pll6_divs_data __initconst = { .factors = &sun6i_a31_pll6_data, .ndivs = 1, .div = { { .fixed = 2 }, /* normal output */ } }; /** * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks * * These clocks look something like this * ________________________ * | ___divisor 1---|----> to consumer * parent >--| pll___/___divisor 2---|----> to consumer * | \_______________|____> to consumer * |________________________| */ static void __init sunxi_divs_clk_setup(struct device_node *node, struct divs_data *data) { struct clk_onecell_data *clk_data; const char *parent; const char *clk_name; struct clk **clks, *pclk; struct clk_hw *gate_hw, *rate_hw; const struct clk_ops *rate_ops; struct clk_gate *gate = NULL; struct clk_fixed_factor *fix_factor; struct clk_divider *divider; void __iomem *reg; int ndivs = SUNXI_DIVS_MAX_QTY, i = 0; int flags, clkflags; /* Set up factor clock that we will be dividing */ pclk = sunxi_factors_clk_setup(node, data->factors); parent = __clk_get_name(pclk); reg = of_iomap(node, 0); clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL); if (!clk_data) return; clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL); if (!clks) goto free_clkdata; clk_data->clks = clks; /* It's not a good idea to have automatic reparenting changing * our RAM clock! */ clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT; /* if number of children known, use it */ if (data->ndivs) ndivs = data->ndivs; for (i = 0; i < ndivs; i++) { if (of_property_read_string_index(node, "clock-output-names", i, &clk_name) != 0) break; gate_hw = NULL; rate_hw = NULL; rate_ops = NULL; /* If this leaf clock can be gated, create a gate */ if (data->div[i].gate) { gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) goto free_clks; gate->reg = reg; gate->bit_idx = data->div[i].gate; gate->lock = &clk_lock; gate_hw = &gate->hw; } /* Leaves can be fixed or configurable divisors */ if (data->div[i].fixed) { fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL); if (!fix_factor) goto free_gate; fix_factor->mult = 1; fix_factor->div = data->div[i].fixed; rate_hw = &fix_factor->hw; rate_ops = &clk_fixed_factor_ops; } else { divider = kzalloc(sizeof(*divider), GFP_KERNEL); if (!divider) goto free_gate; flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0; divider->reg = reg; divider->shift = data->div[i].shift; divider->width = SUNXI_DIVISOR_WIDTH; divider->flags = flags; divider->lock = &clk_lock; divider->table = data->div[i].table; rate_hw = ÷r->hw; rate_ops = &clk_divider_ops; } /* Wrap the (potential) gate and the divisor on a composite * clock to unify them */ clks[i] = clk_register_composite(NULL, clk_name, &parent, 1, NULL, NULL, rate_hw, rate_ops, gate_hw, &clk_gate_ops, clkflags); WARN_ON(IS_ERR(clk_data->clks[i])); clk_register_clkdev(clks[i], clk_name, NULL); } /* The last clock available on the getter is the parent */ clks[i++] = pclk; /* Adjust to the real max */ clk_data->clk_num = i; of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); return; free_gate: kfree(gate); free_clks: kfree(clks); free_clkdata: kfree(clk_data); } /* Matches for factors clocks */ static const struct of_device_id clk_factors_match[] __initconst = { {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,}, {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,}, {.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,}, {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,}, {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,}, {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,}, {} }; /* Matches for divider clocks */ static const struct of_device_id clk_div_match[] __initconst = { {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,}, {.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,}, {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,}, {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,}, {} }; /* Matches for divided outputs */ static const struct of_device_id clk_divs_match[] __initconst = { {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,}, {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,}, {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,}, {} }; /* Matches for mux clocks */ static const struct of_device_id clk_mux_match[] __initconst = { {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,}, {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,}, {} }; /* Matches for gate clocks */ static const struct of_device_id clk_gates_match[] __initconst = { {.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,}, {.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,}, {.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,}, {.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,}, {.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,}, {.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,}, {.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,}, {.compatible = "allwinner,sun9i-a80-ahb0-gates-clk", .data = &sun9i_a80_ahb0_gates_data,}, {.compatible = "allwinner,sun9i-a80-ahb1-gates-clk", .data = &sun9i_a80_ahb1_gates_data,}, {.compatible = "allwinner,sun9i-a80-ahb2-gates-clk", .data = &sun9i_a80_ahb2_gates_data,}, {.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,}, {.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,}, {.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,}, {.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,}, {.compatible = "allwinner,sun9i-a80-apb0-gates-clk", .data = &sun9i_a80_apb0_gates_data,}, {.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,}, {.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,}, {.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,}, {.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,}, {.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,}, {.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,}, {.compatible = "allwinner,sun9i-a80-apb1-gates-clk", .data = &sun9i_a80_apb1_gates_data,}, {.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,}, {.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,}, {.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,}, {.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,}, {.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,}, {} }; static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match, void *function) { struct device_node *np; const struct div_data *data; const struct of_device_id *match; void (*setup_function)(struct device_node *, const void *) = function; for_each_matching_node_and_match(np, clk_match, &match) { data = match->data; setup_function(np, data); } } static void __init sunxi_init_clocks(const char *clocks[], int nclocks) { unsigned int i; /* Register factor clocks */ of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup); /* Register divider clocks */ of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup); /* Register divided output clocks */ of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup); /* Register mux clocks */ of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup); /* Register gate clocks */ of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup); /* Protect the clocks that needs to stay on */ for (i = 0; i < nclocks; i++) { struct clk *clk = clk_get(NULL, clocks[i]); if (!IS_ERR(clk)) clk_prepare_enable(clk); } } static const char *sun4i_a10_critical_clocks[] __initdata = { "pll5_ddr", "ahb_sdram", }; static void __init sun4i_a10_init_clocks(struct device_node *node) { sunxi_init_clocks(sun4i_a10_critical_clocks, ARRAY_SIZE(sun4i_a10_critical_clocks)); } CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks); static const char *sun5i_critical_clocks[] __initdata = { "pll5_ddr", "ahb_sdram", }; static void __init sun5i_init_clocks(struct device_node *node) { sunxi_init_clocks(sun5i_critical_clocks, ARRAY_SIZE(sun5i_critical_clocks)); } CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks); CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks); CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks); static const char *sun6i_critical_clocks[] __initdata = { "cpu", "ahb1_sdram", }; static void __init sun6i_init_clocks(struct device_node *node) { sunxi_init_clocks(sun6i_critical_clocks, ARRAY_SIZE(sun6i_critical_clocks)); } CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks); CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks); static void __init sun9i_init_clocks(struct device_node *node) { sunxi_init_clocks(NULL, 0); } CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);