// SPDX-License-Identifier: GPL-2.0 /* * Renesas Timer Support - OSTM * * Copyright (C) 2017 Renesas Electronics America, Inc. * Copyright (C) 2017 Chris Brandt */ #include #include #include #include #include #include #include /* * The OSTM contains independent channels. * The first OSTM channel probed will be set up as a free running * clocksource. Additionally we will use this clocksource for the system * schedule timer sched_clock(). * * The second (or more) channel probed will be set up as an interrupt * driven clock event. */ struct ostm_device { void __iomem *base; unsigned long ticks_per_jiffy; struct clock_event_device ced; }; static void __iomem *system_clock; /* For sched_clock() */ /* OSTM REGISTERS */ #define OSTM_CMP 0x000 /* RW,32 */ #define OSTM_CNT 0x004 /* R,32 */ #define OSTM_TE 0x010 /* R,8 */ #define OSTM_TS 0x014 /* W,8 */ #define OSTM_TT 0x018 /* W,8 */ #define OSTM_CTL 0x020 /* RW,8 */ #define TE 0x01 #define TS 0x01 #define TT 0x01 #define CTL_PERIODIC 0x00 #define CTL_ONESHOT 0x02 #define CTL_FREERUN 0x02 static struct ostm_device *ced_to_ostm(struct clock_event_device *ced) { return container_of(ced, struct ostm_device, ced); } static void ostm_timer_stop(struct ostm_device *ostm) { if (readb(ostm->base + OSTM_TE) & TE) { writeb(TT, ostm->base + OSTM_TT); /* * Read back the register simply to confirm the write operation * has completed since I/O writes can sometimes get queued by * the bus architecture. */ while (readb(ostm->base + OSTM_TE) & TE) ; } } static int __init ostm_init_clksrc(struct ostm_device *ostm, unsigned long rate) { /* * irq not used (clock sources don't use interrupts) */ ostm_timer_stop(ostm); writel(0, ostm->base + OSTM_CMP); writeb(CTL_FREERUN, ostm->base + OSTM_CTL); writeb(TS, ostm->base + OSTM_TS); return clocksource_mmio_init(ostm->base + OSTM_CNT, "ostm", rate, 300, 32, clocksource_mmio_readl_up); } static u64 notrace ostm_read_sched_clock(void) { return readl(system_clock); } static void __init ostm_init_sched_clock(struct ostm_device *ostm, unsigned long rate) { system_clock = ostm->base + OSTM_CNT; sched_clock_register(ostm_read_sched_clock, 32, rate); } static int ostm_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct ostm_device *ostm = ced_to_ostm(ced); ostm_timer_stop(ostm); writel(delta, ostm->base + OSTM_CMP); writeb(CTL_ONESHOT, ostm->base + OSTM_CTL); writeb(TS, ostm->base + OSTM_TS); return 0; } static int ostm_shutdown(struct clock_event_device *ced) { struct ostm_device *ostm = ced_to_ostm(ced); ostm_timer_stop(ostm); return 0; } static int ostm_set_periodic(struct clock_event_device *ced) { struct ostm_device *ostm = ced_to_ostm(ced); if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) ostm_timer_stop(ostm); writel(ostm->ticks_per_jiffy - 1, ostm->base + OSTM_CMP); writeb(CTL_PERIODIC, ostm->base + OSTM_CTL); writeb(TS, ostm->base + OSTM_TS); return 0; } static int ostm_set_oneshot(struct clock_event_device *ced) { struct ostm_device *ostm = ced_to_ostm(ced); ostm_timer_stop(ostm); return 0; } static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id) { struct ostm_device *ostm = dev_id; if (clockevent_state_oneshot(&ostm->ced)) ostm_timer_stop(ostm); /* notify clockevent layer */ if (ostm->ced.event_handler) ostm->ced.event_handler(&ostm->ced); return IRQ_HANDLED; } static int __init ostm_init_clkevt(struct ostm_device *ostm, int irq, unsigned long rate) { struct clock_event_device *ced = &ostm->ced; int ret = -ENXIO; ret = request_irq(irq, ostm_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "ostm", ostm); if (ret) { pr_err("ostm: failed to request irq\n"); return ret; } ced->name = "ostm"; ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; ced->set_state_shutdown = ostm_shutdown; ced->set_state_periodic = ostm_set_periodic; ced->set_state_oneshot = ostm_set_oneshot; ced->set_next_event = ostm_clock_event_next; ced->shift = 32; ced->rating = 300; ced->cpumask = cpumask_of(0); clockevents_config_and_register(ced, rate, 0xf, 0xffffffff); return 0; } static int __init ostm_init(struct device_node *np) { struct ostm_device *ostm; int ret = -EFAULT; struct clk *ostm_clk = NULL; int irq; unsigned long rate; ostm = kzalloc(sizeof(*ostm), GFP_KERNEL); if (!ostm) return -ENOMEM; ostm->base = of_iomap(np, 0); if (!ostm->base) { pr_err("ostm: failed to remap I/O memory\n"); goto err; } irq = irq_of_parse_and_map(np, 0); if (irq < 0) { pr_err("ostm: Failed to get irq\n"); goto err; } ostm_clk = of_clk_get(np, 0); if (IS_ERR(ostm_clk)) { pr_err("ostm: Failed to get clock\n"); ostm_clk = NULL; goto err; } ret = clk_prepare_enable(ostm_clk); if (ret) { pr_err("ostm: Failed to enable clock\n"); goto err; } rate = clk_get_rate(ostm_clk); ostm->ticks_per_jiffy = (rate + HZ / 2) / HZ; /* * First probed device will be used as system clocksource. Any * additional devices will be used as clock events. */ if (!system_clock) { ret = ostm_init_clksrc(ostm, rate); if (!ret) { ostm_init_sched_clock(ostm, rate); pr_info("ostm: used for clocksource\n"); } } else { ret = ostm_init_clkevt(ostm, irq, rate); if (!ret) pr_info("ostm: used for clock events\n"); } err: if (ret) { clk_disable_unprepare(ostm_clk); iounmap(ostm->base); kfree(ostm); return ret; } return 0; } TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);