// SPDX-License-Identifier: GPL-2.0-or-later /* * Mediatek SoCs General-Purpose Timer handling. * * Copyright (C) 2014 Matthias Brugger * * Matthias Brugger */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include "timer-of.h" #define TIMER_CLK_EVT (1) #define TIMER_CLK_SRC (2) #define TIMER_SYNC_TICKS (3) /* cpux mcusys wrapper */ #define CPUX_CON_REG 0x0 #define CPUX_IDX_REG 0x4 /* cpux */ #define CPUX_IDX_GLOBAL_CTRL 0x0 #define CPUX_ENABLE BIT(0) #define CPUX_CLK_DIV_MASK GENMASK(10, 8) #define CPUX_CLK_DIV1 BIT(8) #define CPUX_CLK_DIV2 BIT(9) #define CPUX_CLK_DIV4 BIT(10) #define CPUX_IDX_GLOBAL_IRQ 0x30 /* gpt */ #define GPT_IRQ_EN_REG 0x00 #define GPT_IRQ_ENABLE(val) BIT((val) - 1) #define GPT_IRQ_ACK_REG 0x08 #define GPT_IRQ_ACK(val) BIT((val) - 1) #define GPT_CTRL_REG(val) (0x10 * (val)) #define GPT_CTRL_OP(val) (((val) & 0x3) << 4) #define GPT_CTRL_OP_ONESHOT (0) #define GPT_CTRL_OP_REPEAT (1) #define GPT_CTRL_OP_FREERUN (3) #define GPT_CTRL_CLEAR (2) #define GPT_CTRL_ENABLE (1) #define GPT_CTRL_DISABLE (0) #define GPT_CLK_REG(val) (0x04 + (0x10 * (val))) #define GPT_CLK_SRC(val) (((val) & 0x1) << 4) #define GPT_CLK_SRC_SYS13M (0) #define GPT_CLK_SRC_RTC32K (1) #define GPT_CLK_DIV1 (0x0) #define GPT_CLK_DIV2 (0x1) #define GPT_CNT_REG(val) (0x08 + (0x10 * (val))) #define GPT_CMP_REG(val) (0x0C + (0x10 * (val))) /* system timer */ #define SYST_BASE (0x40) #define SYST_CON (SYST_BASE + 0x0) #define SYST_VAL (SYST_BASE + 0x4) #define SYST_CON_REG(to) (timer_of_base(to) + SYST_CON) #define SYST_VAL_REG(to) (timer_of_base(to) + SYST_VAL) /* * SYST_CON_EN: Clock enable. Shall be set to * - Start timer countdown. * - Allow timeout ticks being updated. * - Allow changing interrupt status,like clear irq pending. * * SYST_CON_IRQ_EN: Set to enable interrupt. * * SYST_CON_IRQ_CLR: Set to clear interrupt. */ #define SYST_CON_EN BIT(0) #define SYST_CON_IRQ_EN BIT(1) #define SYST_CON_IRQ_CLR BIT(4) static void __iomem *gpt_sched_reg __read_mostly; static u32 mtk_cpux_readl(u32 reg_idx, struct timer_of *to) { writel(reg_idx, timer_of_base(to) + CPUX_IDX_REG); return readl(timer_of_base(to) + CPUX_CON_REG); } static void mtk_cpux_writel(u32 val, u32 reg_idx, struct timer_of *to) { writel(reg_idx, timer_of_base(to) + CPUX_IDX_REG); writel(val, timer_of_base(to) + CPUX_CON_REG); } static void mtk_cpux_set_irq(struct timer_of *to, bool enable) { const unsigned long *irq_mask = cpumask_bits(cpu_possible_mask); u32 val; val = mtk_cpux_readl(CPUX_IDX_GLOBAL_IRQ, to); if (enable) val |= *irq_mask; else val &= ~(*irq_mask); mtk_cpux_writel(val, CPUX_IDX_GLOBAL_IRQ, to); } static int mtk_cpux_clkevt_shutdown(struct clock_event_device *clkevt) { /* Clear any irq */ mtk_cpux_set_irq(to_timer_of(clkevt), false); /* * Disabling CPUXGPT timer will crash the platform, especially * if Trusted Firmware is using it (usually, for sleep states), * so we only mask the IRQ and call it a day. */ return 0; } static int mtk_cpux_clkevt_resume(struct clock_event_device *clkevt) { mtk_cpux_set_irq(to_timer_of(clkevt), true); return 0; } static void mtk_syst_ack_irq(struct timer_of *to) { /* Clear and disable interrupt */ writel(SYST_CON_EN, SYST_CON_REG(to)); writel(SYST_CON_IRQ_CLR | SYST_CON_EN, SYST_CON_REG(to)); } static irqreturn_t mtk_syst_handler(int irq, void *dev_id) { struct clock_event_device *clkevt = dev_id; struct timer_of *to = to_timer_of(clkevt); mtk_syst_ack_irq(to); clkevt->event_handler(clkevt); return IRQ_HANDLED; } static int mtk_syst_clkevt_next_event(unsigned long ticks, struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); /* Enable clock to allow timeout tick update later */ writel(SYST_CON_EN, SYST_CON_REG(to)); /* * Write new timeout ticks. Timer shall start countdown * after timeout ticks are updated. */ writel(ticks, SYST_VAL_REG(to)); /* Enable interrupt */ writel(SYST_CON_EN | SYST_CON_IRQ_EN, SYST_CON_REG(to)); return 0; } static int mtk_syst_clkevt_shutdown(struct clock_event_device *clkevt) { /* Clear any irq */ mtk_syst_ack_irq(to_timer_of(clkevt)); /* Disable timer */ writel(0, SYST_CON_REG(to_timer_of(clkevt))); return 0; } static int mtk_syst_clkevt_resume(struct clock_event_device *clkevt) { return mtk_syst_clkevt_shutdown(clkevt); } static int mtk_syst_clkevt_oneshot(struct clock_event_device *clkevt) { return 0; } static u64 notrace mtk_gpt_read_sched_clock(void) { return readl_relaxed(gpt_sched_reg); } static void mtk_gpt_clkevt_time_stop(struct timer_of *to, u8 timer) { u32 val; val = readl(timer_of_base(to) + GPT_CTRL_REG(timer)); writel(val & ~GPT_CTRL_ENABLE, timer_of_base(to) + GPT_CTRL_REG(timer)); } static void mtk_gpt_clkevt_time_setup(struct timer_of *to, unsigned long delay, u8 timer) { writel(delay, timer_of_base(to) + GPT_CMP_REG(timer)); } static void mtk_gpt_clkevt_time_start(struct timer_of *to, bool periodic, u8 timer) { u32 val; /* Acknowledge interrupt */ writel(GPT_IRQ_ACK(timer), timer_of_base(to) + GPT_IRQ_ACK_REG); val = readl(timer_of_base(to) + GPT_CTRL_REG(timer)); /* Clear 2 bit timer operation mode field */ val &= ~GPT_CTRL_OP(0x3); if (periodic) val |= GPT_CTRL_OP(GPT_CTRL_OP_REPEAT); else val |= GPT_CTRL_OP(GPT_CTRL_OP_ONESHOT); writel(val | GPT_CTRL_ENABLE | GPT_CTRL_CLEAR, timer_of_base(to) + GPT_CTRL_REG(timer)); } static int mtk_gpt_clkevt_shutdown(struct clock_event_device *clk) { mtk_gpt_clkevt_time_stop(to_timer_of(clk), TIMER_CLK_EVT); return 0; } static int mtk_gpt_clkevt_set_periodic(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mtk_gpt_clkevt_time_stop(to, TIMER_CLK_EVT); mtk_gpt_clkevt_time_setup(to, to->of_clk.period, TIMER_CLK_EVT); mtk_gpt_clkevt_time_start(to, true, TIMER_CLK_EVT); return 0; } static int mtk_gpt_clkevt_next_event(unsigned long event, struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mtk_gpt_clkevt_time_stop(to, TIMER_CLK_EVT); mtk_gpt_clkevt_time_setup(to, event, TIMER_CLK_EVT); mtk_gpt_clkevt_time_start(to, false, TIMER_CLK_EVT); return 0; } static irqreturn_t mtk_gpt_interrupt(int irq, void *dev_id) { struct clock_event_device *clkevt = (struct clock_event_device *)dev_id; struct timer_of *to = to_timer_of(clkevt); /* Acknowledge timer0 irq */ writel(GPT_IRQ_ACK(TIMER_CLK_EVT), timer_of_base(to) + GPT_IRQ_ACK_REG); clkevt->event_handler(clkevt); return IRQ_HANDLED; } static void __init mtk_gpt_setup(struct timer_of *to, u8 timer, u8 option) { writel(GPT_CTRL_CLEAR | GPT_CTRL_DISABLE, timer_of_base(to) + GPT_CTRL_REG(timer)); writel(GPT_CLK_SRC(GPT_CLK_SRC_SYS13M) | GPT_CLK_DIV1, timer_of_base(to) + GPT_CLK_REG(timer)); writel(0x0, timer_of_base(to) + GPT_CMP_REG(timer)); writel(GPT_CTRL_OP(option) | GPT_CTRL_ENABLE, timer_of_base(to) + GPT_CTRL_REG(timer)); } static void mtk_gpt_enable_irq(struct timer_of *to, u8 timer) { u32 val; /* Disable all interrupts */ writel(0x0, timer_of_base(to) + GPT_IRQ_EN_REG); /* Acknowledge all spurious pending interrupts */ writel(0x3f, timer_of_base(to) + GPT_IRQ_ACK_REG); val = readl(timer_of_base(to) + GPT_IRQ_EN_REG); writel(val | GPT_IRQ_ENABLE(timer), timer_of_base(to) + GPT_IRQ_EN_REG); } static void mtk_gpt_resume(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mtk_gpt_enable_irq(to, TIMER_CLK_EVT); } static void mtk_gpt_suspend(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); /* Disable all interrupts */ writel(0x0, timer_of_base(to) + GPT_IRQ_EN_REG); /* * This is called with interrupts disabled, * so we need to ack any interrupt that is pending * or for example ATF will prevent a suspend from completing. */ writel(0x3f, timer_of_base(to) + GPT_IRQ_ACK_REG); } static struct timer_of to = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .name = "mtk-clkevt", .rating = 300, .cpumask = cpu_possible_mask, }, .of_irq = { .flags = IRQF_TIMER | IRQF_IRQPOLL, }, }; static int __init mtk_cpux_init(struct device_node *node) { static struct timer_of to_cpux; u32 freq, val; int ret; /* * There are per-cpu interrupts for the CPUX General Purpose Timer * but since this timer feeds the AArch64 System Timer we can rely * on the CPU timer PPIs as well, so we don't declare TIMER_OF_IRQ. */ to_cpux.flags = TIMER_OF_BASE | TIMER_OF_CLOCK; to_cpux.clkevt.name = "mtk-cpuxgpt"; to_cpux.clkevt.rating = 10; to_cpux.clkevt.cpumask = cpu_possible_mask; to_cpux.clkevt.set_state_shutdown = mtk_cpux_clkevt_shutdown; to_cpux.clkevt.tick_resume = mtk_cpux_clkevt_resume; /* If this fails, bad things are about to happen... */ ret = timer_of_init(node, &to_cpux); if (ret) { WARN(1, "Cannot start CPUX timers.\n"); return ret; } /* * Check if we're given a clock with the right frequency for this * timer, otherwise warn but keep going with the setup anyway, as * that makes it possible to still boot the kernel, even though * it may not work correctly (random lockups, etc). * The reason behind this is that having an early UART may not be * possible for everyone and this gives a chance to retrieve kmsg * for eventual debugging even on consumer devices. */ freq = timer_of_rate(&to_cpux); if (freq > 13000000) WARN(1, "Requested unsupported timer frequency %u\n", freq); /* Clock input is 26MHz, set DIV2 to achieve 13MHz clock */ val = mtk_cpux_readl(CPUX_IDX_GLOBAL_CTRL, &to_cpux); val &= ~CPUX_CLK_DIV_MASK; val |= CPUX_CLK_DIV2; mtk_cpux_writel(val, CPUX_IDX_GLOBAL_CTRL, &to_cpux); /* Enable all CPUXGPT timers */ val = mtk_cpux_readl(CPUX_IDX_GLOBAL_CTRL, &to_cpux); mtk_cpux_writel(val | CPUX_ENABLE, CPUX_IDX_GLOBAL_CTRL, &to_cpux); clockevents_config_and_register(&to_cpux.clkevt, timer_of_rate(&to_cpux), TIMER_SYNC_TICKS, 0xffffffff); return 0; } static int __init mtk_syst_init(struct device_node *node) { int ret; to.clkevt.features = CLOCK_EVT_FEAT_DYNIRQ | CLOCK_EVT_FEAT_ONESHOT; to.clkevt.set_state_shutdown = mtk_syst_clkevt_shutdown; to.clkevt.set_state_oneshot = mtk_syst_clkevt_oneshot; to.clkevt.tick_resume = mtk_syst_clkevt_resume; to.clkevt.set_next_event = mtk_syst_clkevt_next_event; to.of_irq.handler = mtk_syst_handler; ret = timer_of_init(node, &to); if (ret) return ret; clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), TIMER_SYNC_TICKS, 0xffffffff); return 0; } static int __init mtk_gpt_init(struct device_node *node) { int ret; to.clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; to.clkevt.set_state_shutdown = mtk_gpt_clkevt_shutdown; to.clkevt.set_state_periodic = mtk_gpt_clkevt_set_periodic; to.clkevt.set_state_oneshot = mtk_gpt_clkevt_shutdown; to.clkevt.tick_resume = mtk_gpt_clkevt_shutdown; to.clkevt.set_next_event = mtk_gpt_clkevt_next_event; to.clkevt.suspend = mtk_gpt_suspend; to.clkevt.resume = mtk_gpt_resume; to.of_irq.handler = mtk_gpt_interrupt; ret = timer_of_init(node, &to); if (ret) return ret; /* Configure clock source */ mtk_gpt_setup(&to, TIMER_CLK_SRC, GPT_CTRL_OP_FREERUN); clocksource_mmio_init(timer_of_base(&to) + GPT_CNT_REG(TIMER_CLK_SRC), node->name, timer_of_rate(&to), 300, 32, clocksource_mmio_readl_up); gpt_sched_reg = timer_of_base(&to) + GPT_CNT_REG(TIMER_CLK_SRC); sched_clock_register(mtk_gpt_read_sched_clock, 32, timer_of_rate(&to)); /* Configure clock event */ mtk_gpt_setup(&to, TIMER_CLK_EVT, GPT_CTRL_OP_REPEAT); clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), TIMER_SYNC_TICKS, 0xffffffff); mtk_gpt_enable_irq(&to, TIMER_CLK_EVT); return 0; } TIMER_OF_DECLARE(mtk_mt6577, "mediatek,mt6577-timer", mtk_gpt_init); TIMER_OF_DECLARE(mtk_mt6765, "mediatek,mt6765-timer", mtk_syst_init); TIMER_OF_DECLARE(mtk_mt6795, "mediatek,mt6795-systimer", mtk_cpux_init);