// SPDX-License-Identifier: GPL-2.0+ /* * addi_apci_3501.c * Copyright (C) 2004,2005 ADDI-DATA GmbH for the source code of this module. * Project manager: Eric Stolz * * ADDI-DATA GmbH * Dieselstrasse 3 * D-77833 Ottersweier * Tel: +19(0)7223/9493-0 * Fax: +49(0)7223/9493-92 * http://www.addi-data.com * info@addi-data.com */ /* * Driver: addi_apci_3501 * Description: ADDI-DATA APCI-3501 Analog output board * Devices: [ADDI-DATA] APCI-3501 (addi_apci_3501) * Author: H Hartley Sweeten * Updated: Mon, 20 Jun 2016 10:57:01 -0700 * Status: untested * * Configuration Options: not applicable, uses comedi PCI auto config * * This board has the following features: * - 4 or 8 analog output channels * - 2 optically isolated digital inputs * - 2 optically isolated digital outputs * - 1 12-bit watchdog/timer * * There are 2 versions of the APCI-3501: * - APCI-3501-4 4 analog output channels * - APCI-3501-8 8 analog output channels * * These boards use the same PCI Vendor/Device IDs. The number of output * channels used by this driver is determined by reading the EEPROM on * the board. * * The watchdog/timer subdevice is not currently supported. */ #include #include "../comedi_pci.h" #include "amcc_s5933.h" /* * PCI bar 1 register I/O map */ #define APCI3501_AO_CTRL_STATUS_REG 0x00 #define APCI3501_AO_CTRL_BIPOLAR BIT(0) #define APCI3501_AO_STATUS_READY BIT(8) #define APCI3501_AO_DATA_REG 0x04 #define APCI3501_AO_DATA_CHAN(x) ((x) << 0) #define APCI3501_AO_DATA_VAL(x) ((x) << 8) #define APCI3501_AO_DATA_BIPOLAR BIT(31) #define APCI3501_AO_TRIG_SCS_REG 0x08 #define APCI3501_TIMER_BASE 0x20 #define APCI3501_DO_REG 0x40 #define APCI3501_DI_REG 0x50 /* * AMCC S5933 NVRAM */ #define NVRAM_USER_DATA_START 0x100 #define NVCMD_BEGIN_READ (0x7 << 5) #define NVCMD_LOAD_LOW (0x4 << 5) #define NVCMD_LOAD_HIGH (0x5 << 5) /* * Function types stored in the eeprom */ #define EEPROM_DIGITALINPUT 0 #define EEPROM_DIGITALOUTPUT 1 #define EEPROM_ANALOGINPUT 2 #define EEPROM_ANALOGOUTPUT 3 #define EEPROM_TIMER 4 #define EEPROM_WATCHDOG 5 #define EEPROM_TIMER_WATCHDOG_COUNTER 10 struct apci3501_private { unsigned long amcc; unsigned char timer_mode; }; static const struct comedi_lrange apci3501_ao_range = { 2, { BIP_RANGE(10), UNI_RANGE(10) } }; static int apci3501_wait_for_dac(struct comedi_device *dev) { unsigned int status; do { status = inl(dev->iobase + APCI3501_AO_CTRL_STATUS_REG); } while (!(status & APCI3501_AO_STATUS_READY)); return 0; } static int apci3501_ao_insn_write(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { unsigned int chan = CR_CHAN(insn->chanspec); unsigned int range = CR_RANGE(insn->chanspec); unsigned int cfg = APCI3501_AO_DATA_CHAN(chan); int ret; int i; /* * All analog output channels have the same output range. * 14-bit bipolar: 0-10V * 13-bit unipolar: +/-10V * Changing the range of one channel changes all of them! */ if (range) { outl(0, dev->iobase + APCI3501_AO_CTRL_STATUS_REG); } else { cfg |= APCI3501_AO_DATA_BIPOLAR; outl(APCI3501_AO_CTRL_BIPOLAR, dev->iobase + APCI3501_AO_CTRL_STATUS_REG); } for (i = 0; i < insn->n; i++) { unsigned int val = data[i]; if (range == 1) { if (data[i] > 0x1fff) { dev_err(dev->class_dev, "Unipolar resolution is only 13-bits\n"); return -EINVAL; } } ret = apci3501_wait_for_dac(dev); if (ret) return ret; outl(cfg | APCI3501_AO_DATA_VAL(val), dev->iobase + APCI3501_AO_DATA_REG); s->readback[chan] = val; } return insn->n; } static int apci3501_di_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { data[1] = inl(dev->iobase + APCI3501_DI_REG) & 0x3; return insn->n; } static int apci3501_do_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { s->state = inl(dev->iobase + APCI3501_DO_REG); if (comedi_dio_update_state(s, data)) outl(s->state, dev->iobase + APCI3501_DO_REG); data[1] = s->state; return insn->n; } static void apci3501_eeprom_wait(unsigned long iobase) { unsigned char val; do { val = inb(iobase + AMCC_OP_REG_MCSR_NVCMD); } while (val & 0x80); } static unsigned short apci3501_eeprom_readw(unsigned long iobase, unsigned short addr) { unsigned short val = 0; unsigned char tmp; unsigned char i; /* Add the offset to the start of the user data */ addr += NVRAM_USER_DATA_START; for (i = 0; i < 2; i++) { /* Load the low 8 bit address */ outb(NVCMD_LOAD_LOW, iobase + AMCC_OP_REG_MCSR_NVCMD); apci3501_eeprom_wait(iobase); outb((addr + i) & 0xff, iobase + AMCC_OP_REG_MCSR_NVDATA); apci3501_eeprom_wait(iobase); /* Load the high 8 bit address */ outb(NVCMD_LOAD_HIGH, iobase + AMCC_OP_REG_MCSR_NVCMD); apci3501_eeprom_wait(iobase); outb(((addr + i) >> 8) & 0xff, iobase + AMCC_OP_REG_MCSR_NVDATA); apci3501_eeprom_wait(iobase); /* Read the eeprom data byte */ outb(NVCMD_BEGIN_READ, iobase + AMCC_OP_REG_MCSR_NVCMD); apci3501_eeprom_wait(iobase); tmp = inb(iobase + AMCC_OP_REG_MCSR_NVDATA); apci3501_eeprom_wait(iobase); if (i == 0) val |= tmp; else val |= (tmp << 8); } return val; } static int apci3501_eeprom_get_ao_n_chan(struct comedi_device *dev) { struct apci3501_private *devpriv = dev->private; unsigned char nfuncs; int i; nfuncs = apci3501_eeprom_readw(devpriv->amcc, 10) & 0xff; /* Read functionality details */ for (i = 0; i < nfuncs; i++) { unsigned short offset = i * 4; unsigned short addr; unsigned char func; unsigned short val; func = apci3501_eeprom_readw(devpriv->amcc, 12 + offset) & 0x3f; addr = apci3501_eeprom_readw(devpriv->amcc, 14 + offset); if (func == EEPROM_ANALOGOUTPUT) { val = apci3501_eeprom_readw(devpriv->amcc, addr + 10); return (val >> 4) & 0x3ff; } } return 0; } static int apci3501_eeprom_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct apci3501_private *devpriv = dev->private; unsigned short addr = CR_CHAN(insn->chanspec); unsigned int val; unsigned int i; if (insn->n) { /* No point reading the same EEPROM location more than once. */ val = apci3501_eeprom_readw(devpriv->amcc, 2 * addr); for (i = 0; i < insn->n; i++) data[i] = val; } return insn->n; } static int apci3501_reset(struct comedi_device *dev) { unsigned int val; int chan; int ret; /* Reset all digital outputs to "0" */ outl(0x0, dev->iobase + APCI3501_DO_REG); /* Default all analog outputs to 0V (bipolar) */ outl(APCI3501_AO_CTRL_BIPOLAR, dev->iobase + APCI3501_AO_CTRL_STATUS_REG); val = APCI3501_AO_DATA_BIPOLAR | APCI3501_AO_DATA_VAL(0); /* Set all analog output channels */ for (chan = 0; chan < 8; chan++) { ret = apci3501_wait_for_dac(dev); if (ret) { dev_warn(dev->class_dev, "%s: DAC not-ready for channel %i\n", __func__, chan); } else { outl(val | APCI3501_AO_DATA_CHAN(chan), dev->iobase + APCI3501_AO_DATA_REG); } } return 0; } static int apci3501_auto_attach(struct comedi_device *dev, unsigned long context_unused) { struct pci_dev *pcidev = comedi_to_pci_dev(dev); struct apci3501_private *devpriv; struct comedi_subdevice *s; int ao_n_chan; int ret; devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); if (!devpriv) return -ENOMEM; ret = comedi_pci_enable(dev); if (ret) return ret; devpriv->amcc = pci_resource_start(pcidev, 0); dev->iobase = pci_resource_start(pcidev, 1); ao_n_chan = apci3501_eeprom_get_ao_n_chan(dev); ret = comedi_alloc_subdevices(dev, 5); if (ret) return ret; /* Initialize the analog output subdevice */ s = &dev->subdevices[0]; if (ao_n_chan) { s->type = COMEDI_SUBD_AO; s->subdev_flags = SDF_WRITABLE | SDF_GROUND | SDF_COMMON; s->n_chan = ao_n_chan; s->maxdata = 0x3fff; s->range_table = &apci3501_ao_range; s->insn_write = apci3501_ao_insn_write; ret = comedi_alloc_subdev_readback(s); if (ret) return ret; } else { s->type = COMEDI_SUBD_UNUSED; } /* Initialize the digital input subdevice */ s = &dev->subdevices[1]; s->type = COMEDI_SUBD_DI; s->subdev_flags = SDF_READABLE; s->n_chan = 2; s->maxdata = 1; s->range_table = &range_digital; s->insn_bits = apci3501_di_insn_bits; /* Initialize the digital output subdevice */ s = &dev->subdevices[2]; s->type = COMEDI_SUBD_DO; s->subdev_flags = SDF_WRITABLE; s->n_chan = 2; s->maxdata = 1; s->range_table = &range_digital; s->insn_bits = apci3501_do_insn_bits; /* Timer/Watchdog subdevice */ s = &dev->subdevices[3]; s->type = COMEDI_SUBD_UNUSED; /* Initialize the eeprom subdevice */ s = &dev->subdevices[4]; s->type = COMEDI_SUBD_MEMORY; s->subdev_flags = SDF_READABLE | SDF_INTERNAL; s->n_chan = 256; s->maxdata = 0xffff; s->insn_read = apci3501_eeprom_insn_read; apci3501_reset(dev); return 0; } static void apci3501_detach(struct comedi_device *dev) { if (dev->iobase) apci3501_reset(dev); comedi_pci_detach(dev); } static struct comedi_driver apci3501_driver = { .driver_name = "addi_apci_3501", .module = THIS_MODULE, .auto_attach = apci3501_auto_attach, .detach = apci3501_detach, }; static int apci3501_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { return comedi_pci_auto_config(dev, &apci3501_driver, id->driver_data); } static const struct pci_device_id apci3501_pci_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_ADDIDATA, 0x3001) }, { 0 } }; MODULE_DEVICE_TABLE(pci, apci3501_pci_table); static struct pci_driver apci3501_pci_driver = { .name = "addi_apci_3501", .id_table = apci3501_pci_table, .probe = apci3501_pci_probe, .remove = comedi_pci_auto_unconfig, }; module_comedi_pci_driver(apci3501_driver, apci3501_pci_driver); MODULE_DESCRIPTION("ADDI-DATA APCI-3501 Analog output board"); MODULE_AUTHOR("Comedi https://www.comedi.org"); MODULE_LICENSE("GPL");