// SPDX-License-Identifier: GPL-2.0+ /* * comedi/drivers/me_daq.c * Hardware driver for Meilhaus data acquisition cards: * ME-2000i, ME-2600i, ME-3000vm1 * * Copyright (C) 2002 Michael Hillmann */ /* * Driver: me_daq * Description: Meilhaus PCI data acquisition cards * Devices: [Meilhaus] ME-2600i (me-2600i), ME-2000i (me-2000i) * Author: Michael Hillmann * Status: experimental * * Configuration options: not applicable, uses PCI auto config * * Supports: * Analog Input, Analog Output, Digital I/O */ #include #include #include #include "../comedi_pci.h" #include "plx9052.h" #define ME2600_FIRMWARE "me2600_firmware.bin" #define XILINX_DOWNLOAD_RESET 0x42 /* Xilinx registers */ /* * PCI BAR2 Memory map (dev->mmio) */ #define ME_CTRL1_REG 0x00 /* R (ai start) | W */ #define ME_CTRL1_INT_ENA BIT(15) #define ME_CTRL1_COUNTER_B_IRQ BIT(12) #define ME_CTRL1_COUNTER_A_IRQ BIT(11) #define ME_CTRL1_CHANLIST_READY_IRQ BIT(10) #define ME_CTRL1_EXT_IRQ BIT(9) #define ME_CTRL1_ADFIFO_HALFFULL_IRQ BIT(8) #define ME_CTRL1_SCAN_COUNT_ENA BIT(5) #define ME_CTRL1_SIMULTANEOUS_ENA BIT(4) #define ME_CTRL1_TRIGGER_FALLING_EDGE BIT(3) #define ME_CTRL1_CONTINUOUS_MODE BIT(2) #define ME_CTRL1_ADC_MODE(x) (((x) & 0x3) << 0) #define ME_CTRL1_ADC_MODE_DISABLE ME_CTRL1_ADC_MODE(0) #define ME_CTRL1_ADC_MODE_SOFT_TRIG ME_CTRL1_ADC_MODE(1) #define ME_CTRL1_ADC_MODE_SCAN_TRIG ME_CTRL1_ADC_MODE(2) #define ME_CTRL1_ADC_MODE_EXT_TRIG ME_CTRL1_ADC_MODE(3) #define ME_CTRL1_ADC_MODE_MASK ME_CTRL1_ADC_MODE(3) #define ME_CTRL2_REG 0x02 /* R (dac update) | W */ #define ME_CTRL2_ADFIFO_ENA BIT(10) #define ME_CTRL2_CHANLIST_ENA BIT(9) #define ME_CTRL2_PORT_B_ENA BIT(7) #define ME_CTRL2_PORT_A_ENA BIT(6) #define ME_CTRL2_COUNTER_B_ENA BIT(4) #define ME_CTRL2_COUNTER_A_ENA BIT(3) #define ME_CTRL2_DAC_ENA BIT(1) #define ME_CTRL2_BUFFERED_DAC BIT(0) #define ME_STATUS_REG 0x04 /* R | W (clears interrupts) */ #define ME_STATUS_COUNTER_B_IRQ BIT(12) #define ME_STATUS_COUNTER_A_IRQ BIT(11) #define ME_STATUS_CHANLIST_READY_IRQ BIT(10) #define ME_STATUS_EXT_IRQ BIT(9) #define ME_STATUS_ADFIFO_HALFFULL_IRQ BIT(8) #define ME_STATUS_ADFIFO_FULL BIT(4) #define ME_STATUS_ADFIFO_HALFFULL BIT(3) #define ME_STATUS_ADFIFO_EMPTY BIT(2) #define ME_STATUS_CHANLIST_FULL BIT(1) #define ME_STATUS_FST_ACTIVE BIT(0) #define ME_DIO_PORT_A_REG 0x06 /* R | W */ #define ME_DIO_PORT_B_REG 0x08 /* R | W */ #define ME_TIMER_DATA_REG(x) (0x0a + ((x) * 2)) /* - | W */ #define ME_AI_FIFO_REG 0x10 /* R (fifo) | W (chanlist) */ #define ME_AI_FIFO_CHANLIST_DIFF BIT(7) #define ME_AI_FIFO_CHANLIST_UNIPOLAR BIT(6) #define ME_AI_FIFO_CHANLIST_GAIN(x) (((x) & 0x3) << 4) #define ME_AI_FIFO_CHANLIST_CHAN(x) (((x) & 0xf) << 0) #define ME_DAC_CTRL_REG 0x12 /* R (updates) | W */ #define ME_DAC_CTRL_BIPOLAR(x) BIT(7 - ((x) & 0x3)) #define ME_DAC_CTRL_GAIN(x) BIT(11 - ((x) & 0x3)) #define ME_DAC_CTRL_MASK(x) (ME_DAC_CTRL_BIPOLAR(x) | \ ME_DAC_CTRL_GAIN(x)) #define ME_AO_DATA_REG(x) (0x14 + ((x) * 2)) /* - | W */ #define ME_COUNTER_ENDDATA_REG(x) (0x1c + ((x) * 2)) /* - | W */ #define ME_COUNTER_STARTDATA_REG(x) (0x20 + ((x) * 2)) /* - | W */ #define ME_COUNTER_VALUE_REG(x) (0x20 + ((x) * 2)) /* R | - */ static const struct comedi_lrange me_ai_range = { 8, { BIP_RANGE(10), BIP_RANGE(5), BIP_RANGE(2.5), BIP_RANGE(1.25), UNI_RANGE(10), UNI_RANGE(5), UNI_RANGE(2.5), UNI_RANGE(1.25) } }; static const struct comedi_lrange me_ao_range = { 3, { BIP_RANGE(10), BIP_RANGE(5), UNI_RANGE(10) } }; enum me_boardid { BOARD_ME2600, BOARD_ME2000, }; struct me_board { const char *name; int needs_firmware; int has_ao; }; static const struct me_board me_boards[] = { [BOARD_ME2600] = { .name = "me-2600i", .needs_firmware = 1, .has_ao = 1, }, [BOARD_ME2000] = { .name = "me-2000i", }, }; struct me_private_data { void __iomem *plx_regbase; /* PLX configuration base address */ unsigned short ctrl1; /* Mirror of CONTROL_1 register */ unsigned short ctrl2; /* Mirror of CONTROL_2 register */ unsigned short dac_ctrl; /* Mirror of the DAC_CONTROL register */ }; static inline void sleep(unsigned int sec) { schedule_timeout_interruptible(sec * HZ); } static int me_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct me_private_data *devpriv = dev->private; unsigned int chan = CR_CHAN(insn->chanspec); unsigned int mask; int ret; if (chan < 16) mask = 0x0000ffff; else mask = 0xffff0000; ret = comedi_dio_insn_config(dev, s, insn, data, mask); if (ret) return ret; if (s->io_bits & 0x0000ffff) devpriv->ctrl2 |= ME_CTRL2_PORT_A_ENA; else devpriv->ctrl2 &= ~ME_CTRL2_PORT_A_ENA; if (s->io_bits & 0xffff0000) devpriv->ctrl2 |= ME_CTRL2_PORT_B_ENA; else devpriv->ctrl2 &= ~ME_CTRL2_PORT_B_ENA; writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG); return insn->n; } static int me_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { void __iomem *mmio_porta = dev->mmio + ME_DIO_PORT_A_REG; void __iomem *mmio_portb = dev->mmio + ME_DIO_PORT_B_REG; unsigned int mask; unsigned int val; mask = comedi_dio_update_state(s, data); if (mask) { if (mask & 0x0000ffff) writew((s->state & 0xffff), mmio_porta); if (mask & 0xffff0000) writew(((s->state >> 16) & 0xffff), mmio_portb); } if (s->io_bits & 0x0000ffff) val = s->state & 0xffff; else val = readw(mmio_porta); if (s->io_bits & 0xffff0000) val |= (s->state & 0xffff0000); else val |= (readw(mmio_portb) << 16); data[1] = val; return insn->n; } static int me_ai_eoc(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned long context) { unsigned int status; status = readw(dev->mmio + ME_STATUS_REG); if ((status & ME_STATUS_ADFIFO_EMPTY) == 0) return 0; return -EBUSY; } static int me_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct me_private_data *devpriv = dev->private; unsigned int chan = CR_CHAN(insn->chanspec); unsigned int range = CR_RANGE(insn->chanspec); unsigned int aref = CR_AREF(insn->chanspec); unsigned int val; int ret = 0; int i; /* * For differential operation, there are only 8 input channels * and only bipolar ranges are available. */ if (aref & AREF_DIFF) { if (chan > 7 || comedi_range_is_unipolar(s, range)) return -EINVAL; } /* clear chanlist and ad fifo */ devpriv->ctrl2 &= ~(ME_CTRL2_ADFIFO_ENA | ME_CTRL2_CHANLIST_ENA); writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG); writew(0x00, dev->mmio + ME_STATUS_REG); /* clear interrupts */ /* enable the chanlist and ADC fifo */ devpriv->ctrl2 |= (ME_CTRL2_ADFIFO_ENA | ME_CTRL2_CHANLIST_ENA); writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG); /* write to channel list fifo */ val = ME_AI_FIFO_CHANLIST_CHAN(chan) | ME_AI_FIFO_CHANLIST_GAIN(range); if (comedi_range_is_unipolar(s, range)) val |= ME_AI_FIFO_CHANLIST_UNIPOLAR; if (aref & AREF_DIFF) val |= ME_AI_FIFO_CHANLIST_DIFF; writew(val, dev->mmio + ME_AI_FIFO_REG); /* set ADC mode to software trigger */ devpriv->ctrl1 |= ME_CTRL1_ADC_MODE_SOFT_TRIG; writew(devpriv->ctrl1, dev->mmio + ME_CTRL1_REG); for (i = 0; i < insn->n; i++) { /* start ai conversion */ readw(dev->mmio + ME_CTRL1_REG); /* wait for ADC fifo not empty flag */ ret = comedi_timeout(dev, s, insn, me_ai_eoc, 0); if (ret) break; /* get value from ADC fifo */ val = readw(dev->mmio + ME_AI_FIFO_REG) & s->maxdata; /* munge 2's complement value to offset binary */ data[i] = comedi_offset_munge(s, val); } /* stop any running conversion */ devpriv->ctrl1 &= ~ME_CTRL1_ADC_MODE_MASK; writew(devpriv->ctrl1, dev->mmio + ME_CTRL1_REG); return ret ? ret : insn->n; } static int me_ao_insn_write(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct me_private_data *devpriv = dev->private; unsigned int chan = CR_CHAN(insn->chanspec); unsigned int range = CR_RANGE(insn->chanspec); unsigned int val = s->readback[chan]; int i; /* Enable all DAC */ devpriv->ctrl2 |= ME_CTRL2_DAC_ENA; writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG); /* and set DAC to "buffered" mode */ devpriv->ctrl2 |= ME_CTRL2_BUFFERED_DAC; writew(devpriv->ctrl2, dev->mmio + ME_CTRL2_REG); /* Set dac-control register */ devpriv->dac_ctrl &= ~ME_DAC_CTRL_MASK(chan); if (range == 0) devpriv->dac_ctrl |= ME_DAC_CTRL_GAIN(chan); if (comedi_range_is_bipolar(s, range)) devpriv->dac_ctrl |= ME_DAC_CTRL_BIPOLAR(chan); writew(devpriv->dac_ctrl, dev->mmio + ME_DAC_CTRL_REG); /* Update dac-control register */ readw(dev->mmio + ME_DAC_CTRL_REG); /* Set data register */ for (i = 0; i < insn->n; i++) { val = data[i]; writew(val, dev->mmio + ME_AO_DATA_REG(chan)); } s->readback[chan] = val; /* Update dac with data registers */ readw(dev->mmio + ME_CTRL2_REG); return insn->n; } static int me2600_xilinx_download(struct comedi_device *dev, const u8 *data, size_t size, unsigned long context) { struct me_private_data *devpriv = dev->private; unsigned int value; unsigned int file_length; unsigned int i; /* disable irq's on PLX */ writel(0x00, devpriv->plx_regbase + PLX9052_INTCSR); /* First, make a dummy read to reset xilinx */ value = readw(dev->mmio + XILINX_DOWNLOAD_RESET); /* Wait until reset is over */ sleep(1); /* Write a dummy value to Xilinx */ writeb(0x00, dev->mmio + 0x0); sleep(1); /* * Format of the firmware * Build longs from the byte-wise coded header * Byte 1-3: length of the array * Byte 4-7: version * Byte 8-11: date * Byte 12-15: reserved */ if (size < 16) return -EINVAL; file_length = (((unsigned int)data[0] & 0xff) << 24) + (((unsigned int)data[1] & 0xff) << 16) + (((unsigned int)data[2] & 0xff) << 8) + ((unsigned int)data[3] & 0xff); /* * Loop for writing firmware byte by byte to xilinx * Firmware data start at offset 16 */ for (i = 0; i < file_length; i++) writeb((data[16 + i] & 0xff), dev->mmio + 0x0); /* Write 5 dummy values to xilinx */ for (i = 0; i < 5; i++) writeb(0x00, dev->mmio + 0x0); /* Test if there was an error during download -> INTB was thrown */ value = readl(devpriv->plx_regbase + PLX9052_INTCSR); if (value & PLX9052_INTCSR_LI2STAT) { /* Disable interrupt */ writel(0x00, devpriv->plx_regbase + PLX9052_INTCSR); dev_err(dev->class_dev, "Xilinx download failed\n"); return -EIO; } /* Wait until the Xilinx is ready for real work */ sleep(1); /* Enable PLX-Interrupts */ writel(PLX9052_INTCSR_LI1ENAB | PLX9052_INTCSR_LI1POL | PLX9052_INTCSR_PCIENAB, devpriv->plx_regbase + PLX9052_INTCSR); return 0; } static int me_reset(struct comedi_device *dev) { struct me_private_data *devpriv = dev->private; /* Reset board */ writew(0x00, dev->mmio + ME_CTRL1_REG); writew(0x00, dev->mmio + ME_CTRL2_REG); writew(0x00, dev->mmio + ME_STATUS_REG); /* clear interrupts */ writew(0x00, dev->mmio + ME_DAC_CTRL_REG); /* Save values in the board context */ devpriv->dac_ctrl = 0; devpriv->ctrl1 = 0; devpriv->ctrl2 = 0; return 0; } static int me_auto_attach(struct comedi_device *dev, unsigned long context) { struct pci_dev *pcidev = comedi_to_pci_dev(dev); const struct me_board *board = NULL; struct me_private_data *devpriv; struct comedi_subdevice *s; int ret; if (context < ARRAY_SIZE(me_boards)) board = &me_boards[context]; if (!board) return -ENODEV; dev->board_ptr = board; dev->board_name = board->name; devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); if (!devpriv) return -ENOMEM; ret = comedi_pci_enable(dev); if (ret) return ret; devpriv->plx_regbase = pci_ioremap_bar(pcidev, 0); if (!devpriv->plx_regbase) return -ENOMEM; dev->mmio = pci_ioremap_bar(pcidev, 2); if (!dev->mmio) return -ENOMEM; /* Download firmware and reset card */ if (board->needs_firmware) { ret = comedi_load_firmware(dev, &comedi_to_pci_dev(dev)->dev, ME2600_FIRMWARE, me2600_xilinx_download, 0); if (ret < 0) return ret; } me_reset(dev); ret = comedi_alloc_subdevices(dev, 3); if (ret) return ret; s = &dev->subdevices[0]; s->type = COMEDI_SUBD_AI; s->subdev_flags = SDF_READABLE | SDF_COMMON | SDF_DIFF; s->n_chan = 16; s->maxdata = 0x0fff; s->len_chanlist = 16; s->range_table = &me_ai_range; s->insn_read = me_ai_insn_read; s = &dev->subdevices[1]; if (board->has_ao) { s->type = COMEDI_SUBD_AO; s->subdev_flags = SDF_WRITABLE | SDF_COMMON; s->n_chan = 4; s->maxdata = 0x0fff; s->len_chanlist = 4; s->range_table = &me_ao_range; s->insn_write = me_ao_insn_write; ret = comedi_alloc_subdev_readback(s); if (ret) return ret; } else { s->type = COMEDI_SUBD_UNUSED; } s = &dev->subdevices[2]; s->type = COMEDI_SUBD_DIO; s->subdev_flags = SDF_READABLE | SDF_WRITABLE; s->n_chan = 32; s->maxdata = 1; s->len_chanlist = 32; s->range_table = &range_digital; s->insn_bits = me_dio_insn_bits; s->insn_config = me_dio_insn_config; return 0; } static void me_detach(struct comedi_device *dev) { struct me_private_data *devpriv = dev->private; if (devpriv) { if (dev->mmio) me_reset(dev); if (devpriv->plx_regbase) iounmap(devpriv->plx_regbase); } comedi_pci_detach(dev); } static struct comedi_driver me_daq_driver = { .driver_name = "me_daq", .module = THIS_MODULE, .auto_attach = me_auto_attach, .detach = me_detach, }; static int me_daq_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { return comedi_pci_auto_config(dev, &me_daq_driver, id->driver_data); } static const struct pci_device_id me_daq_pci_table[] = { { PCI_VDEVICE(MEILHAUS, 0x2600), BOARD_ME2600 }, { PCI_VDEVICE(MEILHAUS, 0x2000), BOARD_ME2000 }, { 0 } }; MODULE_DEVICE_TABLE(pci, me_daq_pci_table); static struct pci_driver me_daq_pci_driver = { .name = "me_daq", .id_table = me_daq_pci_table, .probe = me_daq_pci_probe, .remove = comedi_pci_auto_unconfig, }; module_comedi_pci_driver(me_daq_driver, me_daq_pci_driver); MODULE_AUTHOR("Comedi https://www.comedi.org"); MODULE_DESCRIPTION("Comedi low-level driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(ME2600_FIRMWARE);