// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #define KHZ 1000 #define REF_CLK_MHZ 408 /* 408 MHz */ #define US_DELAY 500 #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) #define MAX_CNT ~0U #define NDIV_MASK 0x1FF #define CORE_OFFSET(cpu) (cpu * 8) #define CMU_CLKS_BASE 0x2000 #define SCRATCH_FREQ_CORE_REG(data, cpu) (data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu)) #define MMCRAB_CLUSTER_BASE(cl) (0x30000 + (cl * 0x10000)) #define CLUSTER_ACTMON_BASE(data, cl) \ (data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base)) #define CORE_ACTMON_CNTR_REG(data, cl, cpu) (CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu)) /* cpufreq transisition latency */ #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ struct tegra_cpu_ctr { u32 cpu; u32 coreclk_cnt, last_coreclk_cnt; u32 refclk_cnt, last_refclk_cnt; }; struct read_counters_work { struct work_struct work; struct tegra_cpu_ctr c; }; struct tegra_cpufreq_ops { void (*read_counters)(struct tegra_cpu_ctr *c); void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv); void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid); int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv); }; struct tegra_cpufreq_soc { struct tegra_cpufreq_ops *ops; int maxcpus_per_cluster; unsigned int num_clusters; phys_addr_t actmon_cntr_base; }; struct tegra194_cpufreq_data { void __iomem *regs; struct cpufreq_frequency_table **tables; const struct tegra_cpufreq_soc *soc; }; static struct workqueue_struct *read_counters_wq; static void tegra_get_cpu_mpidr(void *mpidr) { *((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; } static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid) { u64 mpidr; smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true); if (cpuid) *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1); if (clusterid) *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2); } static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); void __iomem *freq_core_reg; u64 mpidr_id; /* use physical id to get address of per core frequency register */ mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid; freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id); *ndiv = readl(freq_core_reg) & NDIV_MASK; return 0; } static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); void __iomem *freq_core_reg; u32 cpu, cpuid, clusterid; u64 mpidr_id; for_each_cpu_and(cpu, policy->cpus, cpu_online_mask) { data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid); /* use physical id to get address of per core frequency register */ mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid; freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id); writel(ndiv, freq_core_reg); } } /* * This register provides access to two counter values with a single * 64-bit read. The counter values are used to determine the average * actual frequency a core has run at over a period of time. * [63:32] PLLP counter: Counts at fixed frequency (408 MHz) * [31:0] Core clock counter: Counts on every core clock cycle */ static void tegra234_read_counters(struct tegra_cpu_ctr *c) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); void __iomem *actmon_reg; u32 cpuid, clusterid; u64 val; data->soc->ops->get_cpu_cluster_id(c->cpu, &cpuid, &clusterid); actmon_reg = CORE_ACTMON_CNTR_REG(data, clusterid, cpuid); val = readq(actmon_reg); c->last_refclk_cnt = upper_32_bits(val); c->last_coreclk_cnt = lower_32_bits(val); udelay(US_DELAY); val = readq(actmon_reg); c->refclk_cnt = upper_32_bits(val); c->coreclk_cnt = lower_32_bits(val); } static struct tegra_cpufreq_ops tegra234_cpufreq_ops = { .read_counters = tegra234_read_counters, .get_cpu_cluster_id = tegra234_get_cpu_cluster_id, .get_cpu_ndiv = tegra234_get_cpu_ndiv, .set_cpu_ndiv = tegra234_set_cpu_ndiv, }; static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = { .ops = &tegra234_cpufreq_ops, .actmon_cntr_base = 0x9000, .maxcpus_per_cluster = 4, .num_clusters = 3, }; static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = { .ops = &tegra234_cpufreq_ops, .actmon_cntr_base = 0x4000, .maxcpus_per_cluster = 8, .num_clusters = 1, }; static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid) { u64 mpidr; smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true); if (cpuid) *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); if (clusterid) *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); } /* * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. * The register provides frequency feedback information to * determine the average actual frequency a core has run at over * a period of time. * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) * [63:32] Core clock counter: counts on every core clock cycle * where the core is architecturally clocking */ static u64 read_freq_feedback(void) { u64 val = 0; asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); return val; } static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response *nltbl, u16 ndiv) { return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); } static void tegra194_read_counters(struct tegra_cpu_ctr *c) { u64 val; val = read_freq_feedback(); c->last_refclk_cnt = lower_32_bits(val); c->last_coreclk_cnt = upper_32_bits(val); udelay(US_DELAY); val = read_freq_feedback(); c->refclk_cnt = lower_32_bits(val); c->coreclk_cnt = upper_32_bits(val); } static void tegra_read_counters(struct work_struct *work) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); struct read_counters_work *read_counters_work; struct tegra_cpu_ctr *c; /* * ref_clk_counter(32 bit counter) runs on constant clk, * pll_p(408MHz). * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter * = 10526880 usec = 10.527 sec to overflow * * Like wise core_clk_counter(32 bit counter) runs on core clock. * It's synchronized to crab_clk (cpu_crab_clk) which runs at * freq of cluster. Assuming max cluster clock ~2000MHz, * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter * = ~2.147 sec to overflow */ read_counters_work = container_of(work, struct read_counters_work, work); c = &read_counters_work->c; data->soc->ops->read_counters(c); } /* * Return instantaneous cpu speed * Instantaneous freq is calculated as - * -Takes sample on every query of getting the freq. * - Read core and ref clock counters; * - Delay for X us * - Read above cycle counters again * - Calculates freq by subtracting current and previous counters * divided by the delay time or eqv. of ref_clk_counter in delta time * - Return Kcycles/second, freq in KHz * * delta time period = x sec * = delta ref_clk_counter / (408 * 10^6) sec * freq in Hz = cycles/sec * = (delta cycles / x sec * = (delta cycles * 408 * 10^6) / delta ref_clk_counter * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter * * @cpu - logical cpu whose freq to be updated * Returns freq in KHz on success, 0 if cpu is offline */ static unsigned int tegra194_calculate_speed(u32 cpu) { struct read_counters_work read_counters_work; struct tegra_cpu_ctr c; u32 delta_refcnt; u32 delta_ccnt; u32 rate_mhz; /* * udelay() is required to reconstruct cpu frequency over an * observation window. Using workqueue to call udelay() with * interrupts enabled. */ read_counters_work.c.cpu = cpu; INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); queue_work_on(cpu, read_counters_wq, &read_counters_work.work); flush_work(&read_counters_work.work); c = read_counters_work.c; if (c.coreclk_cnt < c.last_coreclk_cnt) delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); else delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; if (!delta_ccnt) return 0; /* ref clock is 32 bits */ if (c.refclk_cnt < c.last_refclk_cnt) delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); else delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; if (!delta_refcnt) { pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); return 0; } rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; return (rate_mhz * KHZ); /* in KHz */ } static void tegra194_get_cpu_ndiv_sysreg(void *ndiv) { u64 ndiv_val; asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : ); *(u64 *)ndiv = ndiv_val; } static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv) { return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true); } static void tegra194_set_cpu_ndiv_sysreg(void *data) { u64 ndiv_val = *(u64 *)data; asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); } static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv) { on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true); } static unsigned int tegra194_get_speed(u32 cpu) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); struct cpufreq_frequency_table *pos; u32 cpuid, clusterid; unsigned int rate; u64 ndiv; int ret; data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid); /* reconstruct actual cpu freq using counters */ rate = tegra194_calculate_speed(cpu); /* get last written ndiv value */ ret = data->soc->ops->get_cpu_ndiv(cpu, cpuid, clusterid, &ndiv); if (WARN_ON_ONCE(ret)) return rate; /* * If the reconstructed frequency has acceptable delta from * the last written value, then return freq corresponding * to the last written ndiv value from freq_table. This is * done to return consistent value. */ cpufreq_for_each_valid_entry(pos, data->tables[clusterid]) { if (pos->driver_data != ndiv) continue; if (abs(pos->frequency - rate) > 115200) { pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n", cpu, rate, pos->frequency, ndiv); } else { rate = pos->frequency; } break; } return rate; } static int tegra194_cpufreq_init(struct cpufreq_policy *policy) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); int maxcpus_per_cluster = data->soc->maxcpus_per_cluster; u32 start_cpu, cpu; u32 clusterid; data->soc->ops->get_cpu_cluster_id(policy->cpu, NULL, &clusterid); if (clusterid >= data->soc->num_clusters || !data->tables[clusterid]) return -EINVAL; start_cpu = rounddown(policy->cpu, maxcpus_per_cluster); /* set same policy for all cpus in a cluster */ for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) { if (cpu_possible(cpu)) cpumask_set_cpu(cpu, policy->cpus); } policy->freq_table = data->tables[clusterid]; policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; return 0; } static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int index) { struct cpufreq_frequency_table *tbl = policy->freq_table + index; struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); /* * Each core writes frequency in per core register. Then both cores * in a cluster run at same frequency which is the maximum frequency * request out of the values requested by both cores in that cluster. */ data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data); return 0; } static struct cpufreq_driver tegra194_cpufreq_driver = { .name = "tegra194", .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK, .verify = cpufreq_generic_frequency_table_verify, .target_index = tegra194_cpufreq_set_target, .get = tegra194_get_speed, .init = tegra194_cpufreq_init, .attr = cpufreq_generic_attr, }; static struct tegra_cpufreq_ops tegra194_cpufreq_ops = { .read_counters = tegra194_read_counters, .get_cpu_cluster_id = tegra194_get_cpu_cluster_id, .get_cpu_ndiv = tegra194_get_cpu_ndiv, .set_cpu_ndiv = tegra194_set_cpu_ndiv, }; static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = { .ops = &tegra194_cpufreq_ops, .maxcpus_per_cluster = 2, .num_clusters = 4, }; static void tegra194_cpufreq_free_resources(void) { destroy_workqueue(read_counters_wq); } static struct cpufreq_frequency_table * init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, unsigned int cluster_id) { struct cpufreq_frequency_table *freq_table; struct mrq_cpu_ndiv_limits_response resp; unsigned int num_freqs, ndiv, delta_ndiv; struct mrq_cpu_ndiv_limits_request req; struct tegra_bpmp_message msg; u16 freq_table_step_size; int err, index; memset(&req, 0, sizeof(req)); req.cluster_id = cluster_id; memset(&msg, 0, sizeof(msg)); msg.mrq = MRQ_CPU_NDIV_LIMITS; msg.tx.data = &req; msg.tx.size = sizeof(req); msg.rx.data = &resp; msg.rx.size = sizeof(resp); err = tegra_bpmp_transfer(bpmp, &msg); if (err) return ERR_PTR(err); if (msg.rx.ret == -BPMP_EINVAL) { /* Cluster not available */ return NULL; } if (msg.rx.ret) return ERR_PTR(-EINVAL); /* * Make sure frequency table step is a multiple of mdiv to match * vhint table granularity. */ freq_table_step_size = resp.mdiv * DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", cluster_id, freq_table_step_size); delta_ndiv = resp.ndiv_max - resp.ndiv_min; if (unlikely(delta_ndiv == 0)) { num_freqs = 1; } else { /* We store both ndiv_min and ndiv_max hence the +1 */ num_freqs = delta_ndiv / freq_table_step_size + 1; } num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, sizeof(*freq_table), GFP_KERNEL); if (!freq_table) return ERR_PTR(-ENOMEM); for (index = 0, ndiv = resp.ndiv_min; ndiv < resp.ndiv_max; index++, ndiv += freq_table_step_size) { freq_table[index].driver_data = ndiv; freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); } freq_table[index].driver_data = resp.ndiv_max; freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); freq_table[index].frequency = CPUFREQ_TABLE_END; return freq_table; } static int tegra194_cpufreq_probe(struct platform_device *pdev) { const struct tegra_cpufreq_soc *soc; struct tegra194_cpufreq_data *data; struct tegra_bpmp *bpmp; int err, i; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; soc = of_device_get_match_data(&pdev->dev); if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters) { data->soc = soc; } else { dev_err(&pdev->dev, "soc data missing\n"); return -EINVAL; } data->tables = devm_kcalloc(&pdev->dev, data->soc->num_clusters, sizeof(*data->tables), GFP_KERNEL); if (!data->tables) return -ENOMEM; if (soc->actmon_cntr_base) { /* mmio registers are used for frequency request and re-construction */ data->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(data->regs)) return PTR_ERR(data->regs); } platform_set_drvdata(pdev, data); bpmp = tegra_bpmp_get(&pdev->dev); if (IS_ERR(bpmp)) return PTR_ERR(bpmp); read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); if (!read_counters_wq) { dev_err(&pdev->dev, "fail to create_workqueue\n"); err = -EINVAL; goto put_bpmp; } for (i = 0; i < data->soc->num_clusters; i++) { data->tables[i] = init_freq_table(pdev, bpmp, i); if (IS_ERR(data->tables[i])) { err = PTR_ERR(data->tables[i]); goto err_free_res; } } tegra194_cpufreq_driver.driver_data = data; err = cpufreq_register_driver(&tegra194_cpufreq_driver); if (!err) goto put_bpmp; err_free_res: tegra194_cpufreq_free_resources(); put_bpmp: tegra_bpmp_put(bpmp); return err; } static int tegra194_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&tegra194_cpufreq_driver); tegra194_cpufreq_free_resources(); return 0; } static const struct of_device_id tegra194_cpufreq_of_match[] = { { .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc }, { .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc }, { .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); static struct platform_driver tegra194_ccplex_driver = { .driver = { .name = "tegra194-cpufreq", .of_match_table = tegra194_cpufreq_of_match, }, .probe = tegra194_cpufreq_probe, .remove = tegra194_cpufreq_remove, }; module_platform_driver(tegra194_ccplex_driver); MODULE_AUTHOR("Mikko Perttunen "); MODULE_AUTHOR("Sumit Gupta "); MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); MODULE_LICENSE("GPL v2");