// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #define KHZ 1000 #define REF_CLK_MHZ 408 /* 408 MHz */ #define US_DELAY 500 #define US_DELAY_MIN 2 #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) #define MAX_CNT ~0U /* cpufreq transisition latency */ #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ enum cluster { CLUSTER0, CLUSTER1, CLUSTER2, CLUSTER3, MAX_CLUSTERS, }; struct tegra194_cpufreq_data { void __iomem *regs; size_t num_clusters; struct cpufreq_frequency_table **tables; }; struct tegra_cpu_ctr { u32 cpu; u32 delay; u32 coreclk_cnt, last_coreclk_cnt; u32 refclk_cnt, last_refclk_cnt; }; struct read_counters_work { struct work_struct work; struct tegra_cpu_ctr c; }; static struct workqueue_struct *read_counters_wq; static void get_cpu_cluster(void *cluster) { u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1); } /* * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. * The register provides frequency feedback information to * determine the average actual frequency a core has run at over * a period of time. * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) * [63:32] Core clock counter: counts on every core clock cycle * where the core is architecturally clocking */ static u64 read_freq_feedback(void) { u64 val = 0; asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); return val; } static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response *nltbl, u16 ndiv) { return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); } static void tegra_read_counters(struct work_struct *work) { struct read_counters_work *read_counters_work; struct tegra_cpu_ctr *c; u64 val; /* * ref_clk_counter(32 bit counter) runs on constant clk, * pll_p(408MHz). * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter * = 10526880 usec = 10.527 sec to overflow * * Like wise core_clk_counter(32 bit counter) runs on core clock. * It's synchronized to crab_clk (cpu_crab_clk) which runs at * freq of cluster. Assuming max cluster clock ~2000MHz, * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter * = ~2.147 sec to overflow */ read_counters_work = container_of(work, struct read_counters_work, work); c = &read_counters_work->c; val = read_freq_feedback(); c->last_refclk_cnt = lower_32_bits(val); c->last_coreclk_cnt = upper_32_bits(val); udelay(c->delay); val = read_freq_feedback(); c->refclk_cnt = lower_32_bits(val); c->coreclk_cnt = upper_32_bits(val); } /* * Return instantaneous cpu speed * Instantaneous freq is calculated as - * -Takes sample on every query of getting the freq. * - Read core and ref clock counters; * - Delay for X us * - Read above cycle counters again * - Calculates freq by subtracting current and previous counters * divided by the delay time or eqv. of ref_clk_counter in delta time * - Return Kcycles/second, freq in KHz * * delta time period = x sec * = delta ref_clk_counter / (408 * 10^6) sec * freq in Hz = cycles/sec * = (delta cycles / x sec * = (delta cycles * 408 * 10^6) / delta ref_clk_counter * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter * * @cpu - logical cpu whose freq to be updated * Returns freq in KHz on success, 0 if cpu is offline */ static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay) { struct read_counters_work read_counters_work; struct tegra_cpu_ctr c; u32 delta_refcnt; u32 delta_ccnt; u32 rate_mhz; /* * udelay() is required to reconstruct cpu frequency over an * observation window. Using workqueue to call udelay() with * interrupts enabled. */ read_counters_work.c.cpu = cpu; read_counters_work.c.delay = delay; INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); queue_work_on(cpu, read_counters_wq, &read_counters_work.work); flush_work(&read_counters_work.work); c = read_counters_work.c; if (c.coreclk_cnt < c.last_coreclk_cnt) delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); else delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; if (!delta_ccnt) return 0; /* ref clock is 32 bits */ if (c.refclk_cnt < c.last_refclk_cnt) delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); else delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; if (!delta_refcnt) { pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); return 0; } rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; return (rate_mhz * KHZ); /* in KHz */ } static unsigned int tegra194_get_speed(u32 cpu) { return tegra194_get_speed_common(cpu, US_DELAY); } static int tegra194_cpufreq_init(struct cpufreq_policy *policy) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); u32 cpu; u32 cl; smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true); if (cl >= data->num_clusters) return -EINVAL; /* boot freq */ policy->cur = tegra194_get_speed_common(policy->cpu, US_DELAY_MIN); /* set same policy for all cpus in a cluster */ for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++) cpumask_set_cpu(cpu, policy->cpus); policy->freq_table = data->tables[cl]; policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; return 0; } static void set_cpu_ndiv(void *data) { struct cpufreq_frequency_table *tbl = data; u64 ndiv_val = (u64)tbl->driver_data; asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); } static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int index) { struct cpufreq_frequency_table *tbl = policy->freq_table + index; /* * Each core writes frequency in per core register. Then both cores * in a cluster run at same frequency which is the maximum frequency * request out of the values requested by both cores in that cluster. */ on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true); return 0; } static struct cpufreq_driver tegra194_cpufreq_driver = { .name = "tegra194", .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK, .verify = cpufreq_generic_frequency_table_verify, .target_index = tegra194_cpufreq_set_target, .get = tegra194_get_speed, .init = tegra194_cpufreq_init, .attr = cpufreq_generic_attr, }; static void tegra194_cpufreq_free_resources(void) { destroy_workqueue(read_counters_wq); } static struct cpufreq_frequency_table * init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, unsigned int cluster_id) { struct cpufreq_frequency_table *freq_table; struct mrq_cpu_ndiv_limits_response resp; unsigned int num_freqs, ndiv, delta_ndiv; struct mrq_cpu_ndiv_limits_request req; struct tegra_bpmp_message msg; u16 freq_table_step_size; int err, index; memset(&req, 0, sizeof(req)); req.cluster_id = cluster_id; memset(&msg, 0, sizeof(msg)); msg.mrq = MRQ_CPU_NDIV_LIMITS; msg.tx.data = &req; msg.tx.size = sizeof(req); msg.rx.data = &resp; msg.rx.size = sizeof(resp); err = tegra_bpmp_transfer(bpmp, &msg); if (err) return ERR_PTR(err); /* * Make sure frequency table step is a multiple of mdiv to match * vhint table granularity. */ freq_table_step_size = resp.mdiv * DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", cluster_id, freq_table_step_size); delta_ndiv = resp.ndiv_max - resp.ndiv_min; if (unlikely(delta_ndiv == 0)) { num_freqs = 1; } else { /* We store both ndiv_min and ndiv_max hence the +1 */ num_freqs = delta_ndiv / freq_table_step_size + 1; } num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, sizeof(*freq_table), GFP_KERNEL); if (!freq_table) return ERR_PTR(-ENOMEM); for (index = 0, ndiv = resp.ndiv_min; ndiv < resp.ndiv_max; index++, ndiv += freq_table_step_size) { freq_table[index].driver_data = ndiv; freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); } freq_table[index].driver_data = resp.ndiv_max; freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); freq_table[index].frequency = CPUFREQ_TABLE_END; return freq_table; } static int tegra194_cpufreq_probe(struct platform_device *pdev) { struct tegra194_cpufreq_data *data; struct tegra_bpmp *bpmp; int err, i; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->num_clusters = MAX_CLUSTERS; data->tables = devm_kcalloc(&pdev->dev, data->num_clusters, sizeof(*data->tables), GFP_KERNEL); if (!data->tables) return -ENOMEM; platform_set_drvdata(pdev, data); bpmp = tegra_bpmp_get(&pdev->dev); if (IS_ERR(bpmp)) return PTR_ERR(bpmp); read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); if (!read_counters_wq) { dev_err(&pdev->dev, "fail to create_workqueue\n"); err = -EINVAL; goto put_bpmp; } for (i = 0; i < data->num_clusters; i++) { data->tables[i] = init_freq_table(pdev, bpmp, i); if (IS_ERR(data->tables[i])) { err = PTR_ERR(data->tables[i]); goto err_free_res; } } tegra194_cpufreq_driver.driver_data = data; err = cpufreq_register_driver(&tegra194_cpufreq_driver); if (!err) goto put_bpmp; err_free_res: tegra194_cpufreq_free_resources(); put_bpmp: tegra_bpmp_put(bpmp); return err; } static int tegra194_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&tegra194_cpufreq_driver); tegra194_cpufreq_free_resources(); return 0; } static const struct of_device_id tegra194_cpufreq_of_match[] = { { .compatible = "nvidia,tegra194-ccplex", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); static struct platform_driver tegra194_ccplex_driver = { .driver = { .name = "tegra194-cpufreq", .of_match_table = tegra194_cpufreq_of_match, }, .probe = tegra194_cpufreq_probe, .remove = tegra194_cpufreq_remove, }; module_platform_driver(tegra194_ccplex_driver); MODULE_AUTHOR("Mikko Perttunen "); MODULE_AUTHOR("Sumit Gupta "); MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); MODULE_LICENSE("GPL v2");