// SPDX-License-Identifier: GPL-2.0 /* * Versatile Express SPC CPUFreq Interface driver * * Copyright (C) 2013 - 2019 ARM Ltd. * Sudeep Holla * * Copyright (C) 2013 Linaro. * Viresh Kumar */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Currently we support only two clusters */ #define A15_CLUSTER 0 #define A7_CLUSTER 1 #define MAX_CLUSTERS 2 #ifdef CONFIG_BL_SWITCHER #include static bool bL_switching_enabled; #define is_bL_switching_enabled() bL_switching_enabled #define set_switching_enabled(x) (bL_switching_enabled = (x)) #else #define is_bL_switching_enabled() false #define set_switching_enabled(x) do { } while (0) #define bL_switch_request(...) do { } while (0) #define bL_switcher_put_enabled() do { } while (0) #define bL_switcher_get_enabled() do { } while (0) #endif #define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq) #define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq) static struct thermal_cooling_device *cdev[MAX_CLUSTERS]; static struct clk *clk[MAX_CLUSTERS]; static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1]; static atomic_t cluster_usage[MAX_CLUSTERS + 1]; static unsigned int clk_big_min; /* (Big) clock frequencies */ static unsigned int clk_little_max; /* Maximum clock frequency (Little) */ static DEFINE_PER_CPU(unsigned int, physical_cluster); static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq); static struct mutex cluster_lock[MAX_CLUSTERS]; static inline int raw_cpu_to_cluster(int cpu) { return topology_physical_package_id(cpu); } static inline int cpu_to_cluster(int cpu) { return is_bL_switching_enabled() ? MAX_CLUSTERS : raw_cpu_to_cluster(cpu); } static unsigned int find_cluster_maxfreq(int cluster) { int j; u32 max_freq = 0, cpu_freq; for_each_online_cpu(j) { cpu_freq = per_cpu(cpu_last_req_freq, j); if (cluster == per_cpu(physical_cluster, j) && max_freq < cpu_freq) max_freq = cpu_freq; } return max_freq; } static unsigned int clk_get_cpu_rate(unsigned int cpu) { u32 cur_cluster = per_cpu(physical_cluster, cpu); u32 rate = clk_get_rate(clk[cur_cluster]) / 1000; /* For switcher we use virtual A7 clock rates */ if (is_bL_switching_enabled()) rate = VIRT_FREQ(cur_cluster, rate); return rate; } static unsigned int ve_spc_cpufreq_get_rate(unsigned int cpu) { if (is_bL_switching_enabled()) return per_cpu(cpu_last_req_freq, cpu); else return clk_get_cpu_rate(cpu); } static unsigned int ve_spc_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate) { u32 new_rate, prev_rate; int ret; bool bLs = is_bL_switching_enabled(); mutex_lock(&cluster_lock[new_cluster]); if (bLs) { prev_rate = per_cpu(cpu_last_req_freq, cpu); per_cpu(cpu_last_req_freq, cpu) = rate; per_cpu(physical_cluster, cpu) = new_cluster; new_rate = find_cluster_maxfreq(new_cluster); new_rate = ACTUAL_FREQ(new_cluster, new_rate); } else { new_rate = rate; } ret = clk_set_rate(clk[new_cluster], new_rate * 1000); if (!ret) { /* * FIXME: clk_set_rate hasn't returned an error here however it * may be that clk_change_rate failed due to hardware or * firmware issues and wasn't able to report that due to the * current design of the clk core layer. To work around this * problem we will read back the clock rate and check it is * correct. This needs to be removed once clk core is fixed. */ if (clk_get_rate(clk[new_cluster]) != new_rate * 1000) ret = -EIO; } if (WARN_ON(ret)) { if (bLs) { per_cpu(cpu_last_req_freq, cpu) = prev_rate; per_cpu(physical_cluster, cpu) = old_cluster; } mutex_unlock(&cluster_lock[new_cluster]); return ret; } mutex_unlock(&cluster_lock[new_cluster]); /* Recalc freq for old cluster when switching clusters */ if (old_cluster != new_cluster) { /* Switch cluster */ bL_switch_request(cpu, new_cluster); mutex_lock(&cluster_lock[old_cluster]); /* Set freq of old cluster if there are cpus left on it */ new_rate = find_cluster_maxfreq(old_cluster); new_rate = ACTUAL_FREQ(old_cluster, new_rate); if (new_rate && clk_set_rate(clk[old_cluster], new_rate * 1000)) { pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n", __func__, ret, old_cluster); } mutex_unlock(&cluster_lock[old_cluster]); } return 0; } /* Set clock frequency */ static int ve_spc_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int index) { u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster; unsigned int freqs_new; cur_cluster = cpu_to_cluster(cpu); new_cluster = actual_cluster = per_cpu(physical_cluster, cpu); freqs_new = freq_table[cur_cluster][index].frequency; if (is_bL_switching_enabled()) { if (actual_cluster == A15_CLUSTER && freqs_new < clk_big_min) new_cluster = A7_CLUSTER; else if (actual_cluster == A7_CLUSTER && freqs_new > clk_little_max) new_cluster = A15_CLUSTER; } return ve_spc_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new); } static inline u32 get_table_count(struct cpufreq_frequency_table *table) { int count; for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++) ; return count; } /* get the minimum frequency in the cpufreq_frequency_table */ static inline u32 get_table_min(struct cpufreq_frequency_table *table) { struct cpufreq_frequency_table *pos; u32 min_freq = ~0; cpufreq_for_each_entry(pos, table) if (pos->frequency < min_freq) min_freq = pos->frequency; return min_freq; } /* get the maximum frequency in the cpufreq_frequency_table */ static inline u32 get_table_max(struct cpufreq_frequency_table *table) { struct cpufreq_frequency_table *pos; u32 max_freq = 0; cpufreq_for_each_entry(pos, table) if (pos->frequency > max_freq) max_freq = pos->frequency; return max_freq; } static bool search_frequency(struct cpufreq_frequency_table *table, int size, unsigned int freq) { int count; for (count = 0; count < size; count++) { if (table[count].frequency == freq) return true; } return false; } static int merge_cluster_tables(void) { int i, j, k = 0, count = 1; struct cpufreq_frequency_table *table; for (i = 0; i < MAX_CLUSTERS; i++) count += get_table_count(freq_table[i]); table = kcalloc(count, sizeof(*table), GFP_KERNEL); if (!table) return -ENOMEM; freq_table[MAX_CLUSTERS] = table; /* Add in reverse order to get freqs in increasing order */ for (i = MAX_CLUSTERS - 1; i >= 0; i--, count = k) { for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END; j++) { if (i == A15_CLUSTER && search_frequency(table, count, freq_table[i][j].frequency)) continue; /* skip duplicates */ table[k++].frequency = VIRT_FREQ(i, freq_table[i][j].frequency); } } table[k].driver_data = k; table[k].frequency = CPUFREQ_TABLE_END; return 0; } static void _put_cluster_clk_and_freq_table(struct device *cpu_dev, const struct cpumask *cpumask) { u32 cluster = raw_cpu_to_cluster(cpu_dev->id); if (!freq_table[cluster]) return; clk_put(clk[cluster]); dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]); } static void put_cluster_clk_and_freq_table(struct device *cpu_dev, const struct cpumask *cpumask) { u32 cluster = cpu_to_cluster(cpu_dev->id); int i; if (atomic_dec_return(&cluster_usage[cluster])) return; if (cluster < MAX_CLUSTERS) return _put_cluster_clk_and_freq_table(cpu_dev, cpumask); for_each_present_cpu(i) { struct device *cdev = get_cpu_device(i); if (!cdev) return; _put_cluster_clk_and_freq_table(cdev, cpumask); } /* free virtual table */ kfree(freq_table[cluster]); } static int _get_cluster_clk_and_freq_table(struct device *cpu_dev, const struct cpumask *cpumask) { u32 cluster = raw_cpu_to_cluster(cpu_dev->id); int ret; if (freq_table[cluster]) return 0; /* * platform specific SPC code must initialise the opp table * so just check if the OPP count is non-zero */ ret = dev_pm_opp_get_opp_count(cpu_dev) <= 0; if (ret) goto out; ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]); if (ret) goto out; clk[cluster] = clk_get(cpu_dev, NULL); if (!IS_ERR(clk[cluster])) return 0; dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n", __func__, cpu_dev->id, cluster); ret = PTR_ERR(clk[cluster]); dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]); out: dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__, cluster); return ret; } static int get_cluster_clk_and_freq_table(struct device *cpu_dev, const struct cpumask *cpumask) { u32 cluster = cpu_to_cluster(cpu_dev->id); int i, ret; if (atomic_inc_return(&cluster_usage[cluster]) != 1) return 0; if (cluster < MAX_CLUSTERS) { ret = _get_cluster_clk_and_freq_table(cpu_dev, cpumask); if (ret) atomic_dec(&cluster_usage[cluster]); return ret; } /* * Get data for all clusters and fill virtual cluster with a merge of * both */ for_each_present_cpu(i) { struct device *cdev = get_cpu_device(i); if (!cdev) return -ENODEV; ret = _get_cluster_clk_and_freq_table(cdev, cpumask); if (ret) goto put_clusters; } ret = merge_cluster_tables(); if (ret) goto put_clusters; /* Assuming 2 cluster, set clk_big_min and clk_little_max */ clk_big_min = get_table_min(freq_table[A15_CLUSTER]); clk_little_max = VIRT_FREQ(A7_CLUSTER, get_table_max(freq_table[A7_CLUSTER])); return 0; put_clusters: for_each_present_cpu(i) { struct device *cdev = get_cpu_device(i); if (!cdev) return -ENODEV; _put_cluster_clk_and_freq_table(cdev, cpumask); } atomic_dec(&cluster_usage[cluster]); return ret; } /* Per-CPU initialization */ static int ve_spc_cpufreq_init(struct cpufreq_policy *policy) { u32 cur_cluster = cpu_to_cluster(policy->cpu); struct device *cpu_dev; int ret; cpu_dev = get_cpu_device(policy->cpu); if (!cpu_dev) { pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu); return -ENODEV; } if (cur_cluster < MAX_CLUSTERS) { int cpu; dev_pm_opp_get_sharing_cpus(cpu_dev, policy->cpus); for_each_cpu(cpu, policy->cpus) per_cpu(physical_cluster, cpu) = cur_cluster; } else { /* Assumption: during init, we are always running on A15 */ per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER; } ret = get_cluster_clk_and_freq_table(cpu_dev, policy->cpus); if (ret) return ret; policy->freq_table = freq_table[cur_cluster]; policy->cpuinfo.transition_latency = 1000000; /* 1 ms */ dev_pm_opp_of_register_em(cpu_dev, policy->cpus); if (is_bL_switching_enabled()) per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu); dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu); return 0; } static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy) { struct device *cpu_dev; int cur_cluster = cpu_to_cluster(policy->cpu); if (cur_cluster < MAX_CLUSTERS) { cpufreq_cooling_unregister(cdev[cur_cluster]); cdev[cur_cluster] = NULL; } cpu_dev = get_cpu_device(policy->cpu); if (!cpu_dev) { pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu); return -ENODEV; } put_cluster_clk_and_freq_table(cpu_dev, policy->related_cpus); return 0; } static void ve_spc_cpufreq_ready(struct cpufreq_policy *policy) { int cur_cluster = cpu_to_cluster(policy->cpu); /* Do not register a cpu_cooling device if we are in IKS mode */ if (cur_cluster >= MAX_CLUSTERS) return; cdev[cur_cluster] = of_cpufreq_cooling_register(policy); } static struct cpufreq_driver ve_spc_cpufreq_driver = { .name = "vexpress-spc", .flags = CPUFREQ_STICKY | CPUFREQ_HAVE_GOVERNOR_PER_POLICY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, .verify = cpufreq_generic_frequency_table_verify, .target_index = ve_spc_cpufreq_set_target, .get = ve_spc_cpufreq_get_rate, .init = ve_spc_cpufreq_init, .exit = ve_spc_cpufreq_exit, .ready = ve_spc_cpufreq_ready, .attr = cpufreq_generic_attr, }; #ifdef CONFIG_BL_SWITCHER static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb, unsigned long action, void *_arg) { pr_debug("%s: action: %ld\n", __func__, action); switch (action) { case BL_NOTIFY_PRE_ENABLE: case BL_NOTIFY_PRE_DISABLE: cpufreq_unregister_driver(&ve_spc_cpufreq_driver); break; case BL_NOTIFY_POST_ENABLE: set_switching_enabled(true); cpufreq_register_driver(&ve_spc_cpufreq_driver); break; case BL_NOTIFY_POST_DISABLE: set_switching_enabled(false); cpufreq_register_driver(&ve_spc_cpufreq_driver); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static struct notifier_block bL_switcher_notifier = { .notifier_call = bL_cpufreq_switcher_notifier, }; static int __bLs_register_notifier(void) { return bL_switcher_register_notifier(&bL_switcher_notifier); } static int __bLs_unregister_notifier(void) { return bL_switcher_unregister_notifier(&bL_switcher_notifier); } #else static int __bLs_register_notifier(void) { return 0; } static int __bLs_unregister_notifier(void) { return 0; } #endif static int ve_spc_cpufreq_probe(struct platform_device *pdev) { int ret, i; set_switching_enabled(bL_switcher_get_enabled()); for (i = 0; i < MAX_CLUSTERS; i++) mutex_init(&cluster_lock[i]); ret = cpufreq_register_driver(&ve_spc_cpufreq_driver); if (ret) { pr_info("%s: Failed registering platform driver: %s, err: %d\n", __func__, ve_spc_cpufreq_driver.name, ret); } else { ret = __bLs_register_notifier(); if (ret) cpufreq_unregister_driver(&ve_spc_cpufreq_driver); else pr_info("%s: Registered platform driver: %s\n", __func__, ve_spc_cpufreq_driver.name); } bL_switcher_put_enabled(); return ret; } static int ve_spc_cpufreq_remove(struct platform_device *pdev) { bL_switcher_get_enabled(); __bLs_unregister_notifier(); cpufreq_unregister_driver(&ve_spc_cpufreq_driver); bL_switcher_put_enabled(); pr_info("%s: Un-registered platform driver: %s\n", __func__, ve_spc_cpufreq_driver.name); return 0; } static struct platform_driver ve_spc_cpufreq_platdrv = { .driver = { .name = "vexpress-spc-cpufreq", }, .probe = ve_spc_cpufreq_probe, .remove = ve_spc_cpufreq_remove, }; module_platform_driver(ve_spc_cpufreq_platdrv); MODULE_AUTHOR("Viresh Kumar "); MODULE_AUTHOR("Sudeep Holla "); MODULE_DESCRIPTION("Vexpress SPC ARM big LITTLE cpufreq driver"); MODULE_LICENSE("GPL v2");