/* * Cryptographic API. * * Support for ATMEL AES HW acceleration. * * Copyright (c) 2012 Eukréa Electromatique - ATMEL * Author: Nicolas Royer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Some ideas are from omap-aes.c driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "atmel-aes-regs.h" #define CFB8_BLOCK_SIZE 1 #define CFB16_BLOCK_SIZE 2 #define CFB32_BLOCK_SIZE 4 #define CFB64_BLOCK_SIZE 8 /* AES flags */ #define AES_FLAGS_MODE_MASK 0x01ff #define AES_FLAGS_ENCRYPT BIT(0) #define AES_FLAGS_CBC BIT(1) #define AES_FLAGS_CFB BIT(2) #define AES_FLAGS_CFB8 BIT(3) #define AES_FLAGS_CFB16 BIT(4) #define AES_FLAGS_CFB32 BIT(5) #define AES_FLAGS_CFB64 BIT(6) #define AES_FLAGS_OFB BIT(7) #define AES_FLAGS_CTR BIT(8) #define AES_FLAGS_INIT BIT(16) #define AES_FLAGS_DMA BIT(17) #define AES_FLAGS_BUSY BIT(18) #define AES_FLAGS_DUALBUFF BIT(24) #define ATMEL_AES_QUEUE_LENGTH 1 #define ATMEL_AES_CACHE_SIZE 0 #define ATMEL_AES_DMA_THRESHOLD 16 struct atmel_aes_dev; struct atmel_aes_ctx { struct atmel_aes_dev *dd; int keylen; u32 key[AES_KEYSIZE_256 / sizeof(u32)]; }; struct atmel_aes_reqctx { unsigned long mode; }; struct atmel_aes_dma { struct dma_chan *chan; struct dma_slave_config dma_conf; }; struct atmel_aes_dev { struct list_head list; unsigned long phys_base; void __iomem *io_base; struct atmel_aes_ctx *ctx; struct device *dev; struct clk *iclk; int irq; unsigned long flags; int err; spinlock_t lock; struct crypto_queue queue; struct tasklet_struct done_task; struct tasklet_struct queue_task; struct ablkcipher_request *req; size_t total; struct scatterlist *in_sg; unsigned int nb_in_sg; struct scatterlist *out_sg; unsigned int nb_out_sg; size_t bufcnt; u8 buf_in[ATMEL_AES_DMA_THRESHOLD] __aligned(sizeof(u32)); int dma_in; struct atmel_aes_dma dma_lch_in; u8 buf_out[ATMEL_AES_DMA_THRESHOLD] __aligned(sizeof(u32)); int dma_out; struct atmel_aes_dma dma_lch_out; u32 hw_version; }; struct atmel_aes_drv { struct list_head dev_list; spinlock_t lock; }; static struct atmel_aes_drv atmel_aes = { .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list), .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock), }; static int atmel_aes_sg_length(struct ablkcipher_request *req, struct scatterlist *sg) { unsigned int total = req->nbytes; int sg_nb; unsigned int len; struct scatterlist *sg_list; sg_nb = 0; sg_list = sg; total = req->nbytes; while (total) { len = min(sg_list->length, total); sg_nb++; total -= len; sg_list = sg_next(sg_list); if (!sg_list) total = 0; } return sg_nb; } static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset) { return readl_relaxed(dd->io_base + offset); } static inline void atmel_aes_write(struct atmel_aes_dev *dd, u32 offset, u32 value) { writel_relaxed(value, dd->io_base + offset); } static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset, u32 *value, int count) { for (; count--; value++, offset += 4) *value = atmel_aes_read(dd, offset); } static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset, u32 *value, int count) { for (; count--; value++, offset += 4) atmel_aes_write(dd, offset, *value); } static void atmel_aes_dualbuff_test(struct atmel_aes_dev *dd) { atmel_aes_write(dd, AES_MR, AES_MR_DUALBUFF); if (atmel_aes_read(dd, AES_MR) & AES_MR_DUALBUFF) dd->flags |= AES_FLAGS_DUALBUFF; } static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_ctx *ctx) { struct atmel_aes_dev *aes_dd = NULL; struct atmel_aes_dev *tmp; spin_lock_bh(&atmel_aes.lock); if (!ctx->dd) { list_for_each_entry(tmp, &atmel_aes.dev_list, list) { aes_dd = tmp; break; } ctx->dd = aes_dd; } else { aes_dd = ctx->dd; } spin_unlock_bh(&atmel_aes.lock); return aes_dd; } static int atmel_aes_hw_init(struct atmel_aes_dev *dd) { clk_prepare_enable(dd->iclk); if (!(dd->flags & AES_FLAGS_INIT)) { atmel_aes_write(dd, AES_CR, AES_CR_SWRST); atmel_aes_dualbuff_test(dd); dd->flags |= AES_FLAGS_INIT; dd->err = 0; } return 0; } static void atmel_aes_hw_version_init(struct atmel_aes_dev *dd) { atmel_aes_hw_init(dd); dd->hw_version = atmel_aes_read(dd, AES_HW_VERSION); clk_disable_unprepare(dd->iclk); } static void atmel_aes_finish_req(struct atmel_aes_dev *dd, int err) { struct ablkcipher_request *req = dd->req; clk_disable_unprepare(dd->iclk); dd->flags &= ~AES_FLAGS_BUSY; req->base.complete(&req->base, err); } static void atmel_aes_dma_callback(void *data) { struct atmel_aes_dev *dd = data; /* dma_lch_out - completed */ tasklet_schedule(&dd->done_task); } static int atmel_aes_crypt_dma(struct atmel_aes_dev *dd) { struct dma_async_tx_descriptor *in_desc, *out_desc; int nb_dma_sg_in, nb_dma_sg_out; dd->nb_in_sg = atmel_aes_sg_length(dd->req, dd->in_sg); if (!dd->nb_in_sg) goto exit_err; nb_dma_sg_in = dma_map_sg(dd->dev, dd->in_sg, dd->nb_in_sg, DMA_TO_DEVICE); if (!nb_dma_sg_in) goto exit_err; in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, dd->in_sg, nb_dma_sg_in, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!in_desc) goto unmap_in; /* callback not needed */ dd->nb_out_sg = atmel_aes_sg_length(dd->req, dd->out_sg); if (!dd->nb_out_sg) goto unmap_in; nb_dma_sg_out = dma_map_sg(dd->dev, dd->out_sg, dd->nb_out_sg, DMA_FROM_DEVICE); if (!nb_dma_sg_out) goto unmap_out; out_desc = dmaengine_prep_slave_sg(dd->dma_lch_out.chan, dd->out_sg, nb_dma_sg_out, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!out_desc) goto unmap_out; out_desc->callback = atmel_aes_dma_callback; out_desc->callback_param = dd; dd->total -= dd->req->nbytes; dmaengine_submit(out_desc); dma_async_issue_pending(dd->dma_lch_out.chan); dmaengine_submit(in_desc); dma_async_issue_pending(dd->dma_lch_in.chan); return 0; unmap_out: dma_unmap_sg(dd->dev, dd->out_sg, dd->nb_out_sg, DMA_FROM_DEVICE); unmap_in: dma_unmap_sg(dd->dev, dd->in_sg, dd->nb_in_sg, DMA_TO_DEVICE); exit_err: return -EINVAL; } static int atmel_aes_crypt_cpu_start(struct atmel_aes_dev *dd) { dd->flags &= ~AES_FLAGS_DMA; /* use cache buffers */ dd->nb_in_sg = atmel_aes_sg_length(dd->req, dd->in_sg); if (!dd->nb_in_sg) return -EINVAL; dd->nb_out_sg = atmel_aes_sg_length(dd->req, dd->out_sg); if (!dd->nb_in_sg) return -EINVAL; dd->bufcnt = sg_copy_to_buffer(dd->in_sg, dd->nb_in_sg, dd->buf_in, dd->total); if (!dd->bufcnt) return -EINVAL; dd->total -= dd->bufcnt; atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); atmel_aes_write_n(dd, AES_IDATAR(0), (u32 *) dd->buf_in, dd->bufcnt >> 2); return 0; } static int atmel_aes_crypt_dma_start(struct atmel_aes_dev *dd) { int err; if (dd->flags & AES_FLAGS_CFB8) { dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dd->dma_lch_out.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; } else if (dd->flags & AES_FLAGS_CFB16) { dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; dd->dma_lch_out.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; } else { dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_out.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf); dmaengine_slave_config(dd->dma_lch_out.chan, &dd->dma_lch_out.dma_conf); dd->flags |= AES_FLAGS_DMA; err = atmel_aes_crypt_dma(dd); return err; } static int atmel_aes_write_ctrl(struct atmel_aes_dev *dd) { int err; u32 valcr = 0, valmr = 0; err = atmel_aes_hw_init(dd); if (err) return err; /* MR register must be set before IV registers */ if (dd->ctx->keylen == AES_KEYSIZE_128) valmr |= AES_MR_KEYSIZE_128; else if (dd->ctx->keylen == AES_KEYSIZE_192) valmr |= AES_MR_KEYSIZE_192; else valmr |= AES_MR_KEYSIZE_256; if (dd->flags & AES_FLAGS_CBC) { valmr |= AES_MR_OPMOD_CBC; } else if (dd->flags & AES_FLAGS_CFB) { valmr |= AES_MR_OPMOD_CFB; if (dd->flags & AES_FLAGS_CFB8) valmr |= AES_MR_CFBS_8b; else if (dd->flags & AES_FLAGS_CFB16) valmr |= AES_MR_CFBS_16b; else if (dd->flags & AES_FLAGS_CFB32) valmr |= AES_MR_CFBS_32b; else if (dd->flags & AES_FLAGS_CFB64) valmr |= AES_MR_CFBS_64b; } else if (dd->flags & AES_FLAGS_OFB) { valmr |= AES_MR_OPMOD_OFB; } else if (dd->flags & AES_FLAGS_CTR) { valmr |= AES_MR_OPMOD_CTR; } else { valmr |= AES_MR_OPMOD_ECB; } if (dd->flags & AES_FLAGS_ENCRYPT) valmr |= AES_MR_CYPHER_ENC; if (dd->total > ATMEL_AES_DMA_THRESHOLD) { valmr |= AES_MR_SMOD_IDATAR0; if (dd->flags & AES_FLAGS_DUALBUFF) valmr |= AES_MR_DUALBUFF; } else { valmr |= AES_MR_SMOD_AUTO; } atmel_aes_write(dd, AES_CR, valcr); atmel_aes_write(dd, AES_MR, valmr); atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key, dd->ctx->keylen >> 2); if (((dd->flags & AES_FLAGS_CBC) || (dd->flags & AES_FLAGS_CFB) || (dd->flags & AES_FLAGS_OFB) || (dd->flags & AES_FLAGS_CTR)) && dd->req->info) { atmel_aes_write_n(dd, AES_IVR(0), dd->req->info, 4); } return 0; } static int atmel_aes_handle_queue(struct atmel_aes_dev *dd, struct ablkcipher_request *req) { struct crypto_async_request *async_req, *backlog; struct atmel_aes_ctx *ctx; struct atmel_aes_reqctx *rctx; unsigned long flags; int err, ret = 0; spin_lock_irqsave(&dd->lock, flags); if (req) ret = ablkcipher_enqueue_request(&dd->queue, req); if (dd->flags & AES_FLAGS_BUSY) { spin_unlock_irqrestore(&dd->lock, flags); return ret; } backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (async_req) dd->flags |= AES_FLAGS_BUSY; spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ablkcipher_request_cast(async_req); /* assign new request to device */ dd->req = req; dd->total = req->nbytes; dd->in_sg = req->src; dd->out_sg = req->dst; rctx = ablkcipher_request_ctx(req); ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); rctx->mode &= AES_FLAGS_MODE_MASK; dd->flags = (dd->flags & ~AES_FLAGS_MODE_MASK) | rctx->mode; dd->ctx = ctx; ctx->dd = dd; err = atmel_aes_write_ctrl(dd); if (!err) { if (dd->total > ATMEL_AES_DMA_THRESHOLD) err = atmel_aes_crypt_dma_start(dd); else err = atmel_aes_crypt_cpu_start(dd); } if (err) { /* aes_task will not finish it, so do it here */ atmel_aes_finish_req(dd, err); tasklet_schedule(&dd->queue_task); } return ret; } static int atmel_aes_crypt_dma_stop(struct atmel_aes_dev *dd) { int err = -EINVAL; if (dd->flags & AES_FLAGS_DMA) { dma_unmap_sg(dd->dev, dd->out_sg, dd->nb_out_sg, DMA_FROM_DEVICE); dma_unmap_sg(dd->dev, dd->in_sg, dd->nb_in_sg, DMA_TO_DEVICE); err = 0; } return err; } static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode) { struct atmel_aes_ctx *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req); struct atmel_aes_dev *dd; if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) { pr_err("request size is not exact amount of AES blocks\n"); return -EINVAL; } dd = atmel_aes_find_dev(ctx); if (!dd) return -ENODEV; rctx->mode = mode; return atmel_aes_handle_queue(dd, req); } static bool atmel_aes_filter(struct dma_chan *chan, void *slave) { struct at_dma_slave *sl = slave; if (sl && sl->dma_dev == chan->device->dev) { chan->private = sl; return true; } else { return false; } } static int atmel_aes_dma_init(struct atmel_aes_dev *dd) { int err = -ENOMEM; struct aes_platform_data *pdata; dma_cap_mask_t mask_in, mask_out; pdata = dd->dev->platform_data; if (pdata && pdata->dma_slave->txdata.dma_dev && pdata->dma_slave->rxdata.dma_dev) { /* Try to grab 2 DMA channels */ dma_cap_zero(mask_in); dma_cap_set(DMA_SLAVE, mask_in); dd->dma_lch_in.chan = dma_request_channel(mask_in, atmel_aes_filter, &pdata->dma_slave->rxdata); if (!dd->dma_lch_in.chan) goto err_dma_in; dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV; dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base + AES_IDATAR(0); dd->dma_lch_in.dma_conf.src_maxburst = 1; dd->dma_lch_in.dma_conf.dst_maxburst = 1; dd->dma_lch_in.dma_conf.device_fc = false; dma_cap_zero(mask_out); dma_cap_set(DMA_SLAVE, mask_out); dd->dma_lch_out.chan = dma_request_channel(mask_out, atmel_aes_filter, &pdata->dma_slave->txdata); if (!dd->dma_lch_out.chan) goto err_dma_out; dd->dma_lch_out.dma_conf.direction = DMA_DEV_TO_MEM; dd->dma_lch_out.dma_conf.src_addr = dd->phys_base + AES_ODATAR(0); dd->dma_lch_out.dma_conf.src_maxburst = 1; dd->dma_lch_out.dma_conf.dst_maxburst = 1; dd->dma_lch_out.dma_conf.device_fc = false; return 0; } else { return -ENODEV; } err_dma_out: dma_release_channel(dd->dma_lch_in.chan); err_dma_in: return err; } static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd) { dma_release_channel(dd->dma_lch_in.chan); dma_release_channel(dd->dma_lch_out.chan); } static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct atmel_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) { crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } memcpy(ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT); } static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, 0); } static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC); } static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CBC); } static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_OFB); } static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_OFB); } static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB); } static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB); } static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB64); } static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB64); } static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB32); } static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB32); } static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB16); } static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB16); } static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB8); } static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CFB | AES_FLAGS_CFB8); } static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR); } static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req) { return atmel_aes_crypt(req, AES_FLAGS_CTR); } static int atmel_aes_cra_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx); return 0; } static void atmel_aes_cra_exit(struct crypto_tfm *tfm) { } static struct crypto_alg aes_algs[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "atmel-ecb-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_ecb_encrypt, .decrypt = atmel_aes_ecb_decrypt, } }, { .cra_name = "cbc(aes)", .cra_driver_name = "atmel-cbc-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cbc_encrypt, .decrypt = atmel_aes_cbc_decrypt, } }, { .cra_name = "ofb(aes)", .cra_driver_name = "atmel-ofb-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_ofb_encrypt, .decrypt = atmel_aes_ofb_decrypt, } }, { .cra_name = "cfb(aes)", .cra_driver_name = "atmel-cfb-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb_encrypt, .decrypt = atmel_aes_cfb_decrypt, } }, { .cra_name = "cfb32(aes)", .cra_driver_name = "atmel-cfb32-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = CFB32_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb32_encrypt, .decrypt = atmel_aes_cfb32_decrypt, } }, { .cra_name = "cfb16(aes)", .cra_driver_name = "atmel-cfb16-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = CFB16_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb16_encrypt, .decrypt = atmel_aes_cfb16_decrypt, } }, { .cra_name = "cfb8(aes)", .cra_driver_name = "atmel-cfb8-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = CFB64_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb8_encrypt, .decrypt = atmel_aes_cfb8_decrypt, } }, { .cra_name = "ctr(aes)", .cra_driver_name = "atmel-ctr-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_ctr_encrypt, .decrypt = atmel_aes_ctr_decrypt, } }, }; static struct crypto_alg aes_cfb64_alg[] = { { .cra_name = "cfb64(aes)", .cra_driver_name = "atmel-cfb64-aes", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = CFB64_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_aes_ctx), .cra_alignmask = 0x0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = atmel_aes_cra_init, .cra_exit = atmel_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = atmel_aes_setkey, .encrypt = atmel_aes_cfb64_encrypt, .decrypt = atmel_aes_cfb64_decrypt, } }, }; static void atmel_aes_queue_task(unsigned long data) { struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data; atmel_aes_handle_queue(dd, NULL); } static void atmel_aes_done_task(unsigned long data) { struct atmel_aes_dev *dd = (struct atmel_aes_dev *) data; int err; if (!(dd->flags & AES_FLAGS_DMA)) { atmel_aes_read_n(dd, AES_ODATAR(0), (u32 *) dd->buf_out, dd->bufcnt >> 2); if (sg_copy_from_buffer(dd->out_sg, dd->nb_out_sg, dd->buf_out, dd->bufcnt)) err = 0; else err = -EINVAL; goto cpu_end; } err = atmel_aes_crypt_dma_stop(dd); err = dd->err ? : err; if (dd->total && !err) { err = atmel_aes_crypt_dma_start(dd); if (!err) return; /* DMA started. Not fininishing. */ } cpu_end: atmel_aes_finish_req(dd, err); atmel_aes_handle_queue(dd, NULL); } static irqreturn_t atmel_aes_irq(int irq, void *dev_id) { struct atmel_aes_dev *aes_dd = dev_id; u32 reg; reg = atmel_aes_read(aes_dd, AES_ISR); if (reg & atmel_aes_read(aes_dd, AES_IMR)) { atmel_aes_write(aes_dd, AES_IDR, reg); if (AES_FLAGS_BUSY & aes_dd->flags) tasklet_schedule(&aes_dd->done_task); else dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n"); return IRQ_HANDLED; } return IRQ_NONE; } static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd) { int i; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) crypto_unregister_alg(&aes_algs[i]); if (dd->hw_version >= 0x130) crypto_unregister_alg(&aes_cfb64_alg[0]); } static int atmel_aes_register_algs(struct atmel_aes_dev *dd) { int err, i, j; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { INIT_LIST_HEAD(&aes_algs[i].cra_list); err = crypto_register_alg(&aes_algs[i]); if (err) goto err_aes_algs; } atmel_aes_hw_version_init(dd); if (dd->hw_version >= 0x130) { INIT_LIST_HEAD(&aes_cfb64_alg[0].cra_list); err = crypto_register_alg(&aes_cfb64_alg[0]); if (err) goto err_aes_cfb64_alg; } return 0; err_aes_cfb64_alg: i = ARRAY_SIZE(aes_algs); err_aes_algs: for (j = 0; j < i; j++) crypto_unregister_alg(&aes_algs[j]); return err; } static int __devinit atmel_aes_probe(struct platform_device *pdev) { struct atmel_aes_dev *aes_dd; struct aes_platform_data *pdata; struct device *dev = &pdev->dev; struct resource *aes_res; unsigned long aes_phys_size; int err; pdata = pdev->dev.platform_data; if (!pdata) { err = -ENXIO; goto aes_dd_err; } aes_dd = kzalloc(sizeof(struct atmel_aes_dev), GFP_KERNEL); if (aes_dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); err = -ENOMEM; goto aes_dd_err; } aes_dd->dev = dev; platform_set_drvdata(pdev, aes_dd); INIT_LIST_HEAD(&aes_dd->list); tasklet_init(&aes_dd->done_task, atmel_aes_done_task, (unsigned long)aes_dd); tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task, (unsigned long)aes_dd); crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH); aes_dd->irq = -1; /* Get the base address */ aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!aes_res) { dev_err(dev, "no MEM resource info\n"); err = -ENODEV; goto res_err; } aes_dd->phys_base = aes_res->start; aes_phys_size = resource_size(aes_res); /* Get the IRQ */ aes_dd->irq = platform_get_irq(pdev, 0); if (aes_dd->irq < 0) { dev_err(dev, "no IRQ resource info\n"); err = aes_dd->irq; goto aes_irq_err; } err = request_irq(aes_dd->irq, atmel_aes_irq, IRQF_SHARED, "atmel-aes", aes_dd); if (err) { dev_err(dev, "unable to request aes irq.\n"); goto aes_irq_err; } /* Initializing the clock */ aes_dd->iclk = clk_get(&pdev->dev, NULL); if (IS_ERR(aes_dd->iclk)) { dev_err(dev, "clock intialization failed.\n"); err = PTR_ERR(aes_dd->iclk); goto clk_err; } aes_dd->io_base = ioremap(aes_dd->phys_base, aes_phys_size); if (!aes_dd->io_base) { dev_err(dev, "can't ioremap\n"); err = -ENOMEM; goto aes_io_err; } err = atmel_aes_dma_init(aes_dd); if (err) goto err_aes_dma; spin_lock(&atmel_aes.lock); list_add_tail(&aes_dd->list, &atmel_aes.dev_list); spin_unlock(&atmel_aes.lock); err = atmel_aes_register_algs(aes_dd); if (err) goto err_algs; dev_info(dev, "Atmel AES\n"); return 0; err_algs: spin_lock(&atmel_aes.lock); list_del(&aes_dd->list); spin_unlock(&atmel_aes.lock); atmel_aes_dma_cleanup(aes_dd); err_aes_dma: iounmap(aes_dd->io_base); aes_io_err: clk_put(aes_dd->iclk); clk_err: free_irq(aes_dd->irq, aes_dd); aes_irq_err: res_err: tasklet_kill(&aes_dd->done_task); tasklet_kill(&aes_dd->queue_task); kfree(aes_dd); aes_dd = NULL; aes_dd_err: dev_err(dev, "initialization failed.\n"); return err; } static int __devexit atmel_aes_remove(struct platform_device *pdev) { static struct atmel_aes_dev *aes_dd; aes_dd = platform_get_drvdata(pdev); if (!aes_dd) return -ENODEV; spin_lock(&atmel_aes.lock); list_del(&aes_dd->list); spin_unlock(&atmel_aes.lock); atmel_aes_unregister_algs(aes_dd); tasklet_kill(&aes_dd->done_task); tasklet_kill(&aes_dd->queue_task); atmel_aes_dma_cleanup(aes_dd); iounmap(aes_dd->io_base); clk_put(aes_dd->iclk); if (aes_dd->irq > 0) free_irq(aes_dd->irq, aes_dd); kfree(aes_dd); aes_dd = NULL; return 0; } static struct platform_driver atmel_aes_driver = { .probe = atmel_aes_probe, .remove = __devexit_p(atmel_aes_remove), .driver = { .name = "atmel_aes", .owner = THIS_MODULE, }, }; module_platform_driver(atmel_aes_driver); MODULE_DESCRIPTION("Atmel AES hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");