// SPDX-License-Identifier: GPL-2.0 /* * Microchip / Atmel ECC (I2C) driver. * * Copyright (c) 2017, Microchip Technology Inc. * Author: Tudor Ambarus */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "atmel-i2c.h" static struct atmel_ecc_driver_data driver_data; /** * struct atmel_ecdh_ctx - transformation context * @client : pointer to i2c client device * @fallback : used for unsupported curves or when user wants to use its own * private key. * @public_key : generated when calling set_secret(). It's the responsibility * of the user to not call set_secret() while * generate_public_key() or compute_shared_secret() are in flight. * @curve_id : elliptic curve id * @do_fallback: true when the device doesn't support the curve or when the user * wants to use its own private key. */ struct atmel_ecdh_ctx { struct i2c_client *client; struct crypto_kpp *fallback; const u8 *public_key; unsigned int curve_id; bool do_fallback; }; static void atmel_ecdh_done(struct atmel_i2c_work_data *work_data, void *areq, int status) { struct kpp_request *req = areq; struct atmel_i2c_cmd *cmd = &work_data->cmd; size_t copied, n_sz; if (status) goto free_work_data; /* might want less than we've got */ n_sz = min_t(size_t, ATMEL_ECC_NIST_P256_N_SIZE, req->dst_len); /* copy the shared secret */ copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz), &cmd->data[RSP_DATA_IDX], n_sz); if (copied != n_sz) status = -EINVAL; /* fall through */ free_work_data: kfree_sensitive(work_data); kpp_request_complete(req, status); } /* * A random private key is generated and stored in the device. The device * returns the pair public key. */ static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf, unsigned int len) { struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); struct atmel_i2c_cmd *cmd; void *public_key; struct ecdh params; int ret = -ENOMEM; /* free the old public key, if any */ kfree(ctx->public_key); /* make sure you don't free the old public key twice */ ctx->public_key = NULL; if (crypto_ecdh_decode_key(buf, len, ¶ms) < 0) { dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n"); return -EINVAL; } if (params.key_size) { /* fallback to ecdh software implementation */ ctx->do_fallback = true; return crypto_kpp_set_secret(ctx->fallback, buf, len); } cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) return -ENOMEM; /* * The device only supports NIST P256 ECC keys. The public key size will * always be the same. Use a macro for the key size to avoid unnecessary * computations. */ public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL); if (!public_key) goto free_cmd; ctx->do_fallback = false; atmel_i2c_init_genkey_cmd(cmd, DATA_SLOT_2); ret = atmel_i2c_send_receive(ctx->client, cmd); if (ret) goto free_public_key; /* save the public key */ memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE); ctx->public_key = public_key; kfree(cmd); return 0; free_public_key: kfree(public_key); free_cmd: kfree(cmd); return ret; } static int atmel_ecdh_generate_public_key(struct kpp_request *req) { struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); size_t copied, nbytes; int ret = 0; if (ctx->do_fallback) { kpp_request_set_tfm(req, ctx->fallback); return crypto_kpp_generate_public_key(req); } if (!ctx->public_key) return -EINVAL; /* might want less than we've got */ nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len); /* public key was saved at private key generation */ copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, nbytes), ctx->public_key, nbytes); if (copied != nbytes) ret = -EINVAL; return ret; } static int atmel_ecdh_compute_shared_secret(struct kpp_request *req) { struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); struct atmel_i2c_work_data *work_data; gfp_t gfp; int ret; if (ctx->do_fallback) { kpp_request_set_tfm(req, ctx->fallback); return crypto_kpp_compute_shared_secret(req); } /* must have exactly two points to be on the curve */ if (req->src_len != ATMEL_ECC_PUBKEY_SIZE) return -EINVAL; gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; work_data = kmalloc(sizeof(*work_data), gfp); if (!work_data) return -ENOMEM; work_data->ctx = ctx; work_data->client = ctx->client; ret = atmel_i2c_init_ecdh_cmd(&work_data->cmd, req->src); if (ret) goto free_work_data; atmel_i2c_enqueue(work_data, atmel_ecdh_done, req); return -EINPROGRESS; free_work_data: kfree(work_data); return ret; } static struct i2c_client *atmel_ecc_i2c_client_alloc(void) { struct atmel_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL; struct i2c_client *client = ERR_PTR(-ENODEV); int min_tfm_cnt = INT_MAX; int tfm_cnt; spin_lock(&driver_data.i2c_list_lock); if (list_empty(&driver_data.i2c_client_list)) { spin_unlock(&driver_data.i2c_list_lock); return ERR_PTR(-ENODEV); } list_for_each_entry(i2c_priv, &driver_data.i2c_client_list, i2c_client_list_node) { tfm_cnt = atomic_read(&i2c_priv->tfm_count); if (tfm_cnt < min_tfm_cnt) { min_tfm_cnt = tfm_cnt; min_i2c_priv = i2c_priv; } if (!min_tfm_cnt) break; } if (min_i2c_priv) { atomic_inc(&min_i2c_priv->tfm_count); client = min_i2c_priv->client; } spin_unlock(&driver_data.i2c_list_lock); return client; } static void atmel_ecc_i2c_client_free(struct i2c_client *client) { struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); atomic_dec(&i2c_priv->tfm_count); } static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm) { const char *alg = kpp_alg_name(tfm); struct crypto_kpp *fallback; struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); ctx->curve_id = ECC_CURVE_NIST_P256; ctx->client = atmel_ecc_i2c_client_alloc(); if (IS_ERR(ctx->client)) { pr_err("tfm - i2c_client binding failed\n"); return PTR_ERR(ctx->client); } fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback)) { dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n", alg, PTR_ERR(fallback)); return PTR_ERR(fallback); } crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm)); ctx->fallback = fallback; return 0; } static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm) { struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); kfree(ctx->public_key); crypto_free_kpp(ctx->fallback); atmel_ecc_i2c_client_free(ctx->client); } static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm) { struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); if (ctx->fallback) return crypto_kpp_maxsize(ctx->fallback); /* * The device only supports NIST P256 ECC keys. The public key size will * always be the same. Use a macro for the key size to avoid unnecessary * computations. */ return ATMEL_ECC_PUBKEY_SIZE; } static struct kpp_alg atmel_ecdh_nist_p256 = { .set_secret = atmel_ecdh_set_secret, .generate_public_key = atmel_ecdh_generate_public_key, .compute_shared_secret = atmel_ecdh_compute_shared_secret, .init = atmel_ecdh_init_tfm, .exit = atmel_ecdh_exit_tfm, .max_size = atmel_ecdh_max_size, .base = { .cra_flags = CRYPTO_ALG_NEED_FALLBACK, .cra_name = "ecdh-nist-p256", .cra_driver_name = "atmel-ecdh", .cra_priority = ATMEL_ECC_PRIORITY, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct atmel_ecdh_ctx), }, }; static int atmel_ecc_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct atmel_i2c_client_priv *i2c_priv; int ret; ret = atmel_i2c_probe(client, id); if (ret) return ret; i2c_priv = i2c_get_clientdata(client); spin_lock(&driver_data.i2c_list_lock); list_add_tail(&i2c_priv->i2c_client_list_node, &driver_data.i2c_client_list); spin_unlock(&driver_data.i2c_list_lock); ret = crypto_register_kpp(&atmel_ecdh_nist_p256); if (ret) { spin_lock(&driver_data.i2c_list_lock); list_del(&i2c_priv->i2c_client_list_node); spin_unlock(&driver_data.i2c_list_lock); dev_err(&client->dev, "%s alg registration failed\n", atmel_ecdh_nist_p256.base.cra_driver_name); } else { dev_info(&client->dev, "atmel ecc algorithms registered in /proc/crypto\n"); } return ret; } static int atmel_ecc_remove(struct i2c_client *client) { struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); /* Return EBUSY if i2c client already allocated. */ if (atomic_read(&i2c_priv->tfm_count)) { dev_err(&client->dev, "Device is busy\n"); return -EBUSY; } crypto_unregister_kpp(&atmel_ecdh_nist_p256); spin_lock(&driver_data.i2c_list_lock); list_del(&i2c_priv->i2c_client_list_node); spin_unlock(&driver_data.i2c_list_lock); return 0; } #ifdef CONFIG_OF static const struct of_device_id atmel_ecc_dt_ids[] = { { .compatible = "atmel,atecc508a", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids); #endif static const struct i2c_device_id atmel_ecc_id[] = { { "atecc508a", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, atmel_ecc_id); static struct i2c_driver atmel_ecc_driver = { .driver = { .name = "atmel-ecc", .of_match_table = of_match_ptr(atmel_ecc_dt_ids), }, .probe = atmel_ecc_probe, .remove = atmel_ecc_remove, .id_table = atmel_ecc_id, }; static int __init atmel_ecc_init(void) { spin_lock_init(&driver_data.i2c_list_lock); INIT_LIST_HEAD(&driver_data.i2c_client_list); return i2c_add_driver(&atmel_ecc_driver); } static void __exit atmel_ecc_exit(void) { flush_scheduled_work(); i2c_del_driver(&atmel_ecc_driver); } module_init(atmel_ecc_init); module_exit(atmel_ecc_exit); MODULE_AUTHOR("Tudor Ambarus "); MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver"); MODULE_LICENSE("GPL v2");