// SPDX-License-Identifier: GPL-2.0-only /* * AMD Cryptographic Coprocessor (CCP) AES GCM crypto API support * * Copyright (C) 2016,2017 Advanced Micro Devices, Inc. * * Author: Gary R Hook */ #include #include #include #include #include #include #include #include #include #include #include #include "ccp-crypto.h" static int ccp_aes_gcm_complete(struct crypto_async_request *async_req, int ret) { return ret; } static int ccp_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int key_len) { struct ccp_ctx *ctx = crypto_aead_ctx(tfm); switch (key_len) { case AES_KEYSIZE_128: ctx->u.aes.type = CCP_AES_TYPE_128; break; case AES_KEYSIZE_192: ctx->u.aes.type = CCP_AES_TYPE_192; break; case AES_KEYSIZE_256: ctx->u.aes.type = CCP_AES_TYPE_256; break; default: crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } ctx->u.aes.mode = CCP_AES_MODE_GCM; ctx->u.aes.key_len = key_len; memcpy(ctx->u.aes.key, key, key_len); sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len); return 0; } static int ccp_aes_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return 0; } static int ccp_aes_gcm_crypt(struct aead_request *req, bool encrypt) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct ccp_ctx *ctx = crypto_aead_ctx(tfm); struct ccp_aes_req_ctx *rctx = aead_request_ctx(req); struct scatterlist *iv_sg = NULL; unsigned int iv_len = 0; int i; int ret = 0; if (!ctx->u.aes.key_len) return -EINVAL; if (ctx->u.aes.mode != CCP_AES_MODE_GCM) return -EINVAL; if (!req->iv) return -EINVAL; /* * 5 parts: * plaintext/ciphertext input * AAD * key * IV * Destination+tag buffer */ /* Prepare the IV: 12 bytes + an integer (counter) */ memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE); for (i = 0; i < 3; i++) rctx->iv[i + GCM_AES_IV_SIZE] = 0; rctx->iv[AES_BLOCK_SIZE - 1] = 1; /* Set up a scatterlist for the IV */ iv_sg = &rctx->iv_sg; iv_len = AES_BLOCK_SIZE; sg_init_one(iv_sg, rctx->iv, iv_len); /* The AAD + plaintext are concatenated in the src buffer */ memset(&rctx->cmd, 0, sizeof(rctx->cmd)); INIT_LIST_HEAD(&rctx->cmd.entry); rctx->cmd.engine = CCP_ENGINE_AES; rctx->cmd.u.aes.type = ctx->u.aes.type; rctx->cmd.u.aes.mode = ctx->u.aes.mode; rctx->cmd.u.aes.action = encrypt; rctx->cmd.u.aes.key = &ctx->u.aes.key_sg; rctx->cmd.u.aes.key_len = ctx->u.aes.key_len; rctx->cmd.u.aes.iv = iv_sg; rctx->cmd.u.aes.iv_len = iv_len; rctx->cmd.u.aes.src = req->src; rctx->cmd.u.aes.src_len = req->cryptlen; rctx->cmd.u.aes.aad_len = req->assoclen; /* The cipher text + the tag are in the dst buffer */ rctx->cmd.u.aes.dst = req->dst; ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); return ret; } static int ccp_aes_gcm_encrypt(struct aead_request *req) { return ccp_aes_gcm_crypt(req, CCP_AES_ACTION_ENCRYPT); } static int ccp_aes_gcm_decrypt(struct aead_request *req) { return ccp_aes_gcm_crypt(req, CCP_AES_ACTION_DECRYPT); } static int ccp_aes_gcm_cra_init(struct crypto_aead *tfm) { struct ccp_ctx *ctx = crypto_aead_ctx(tfm); ctx->complete = ccp_aes_gcm_complete; ctx->u.aes.key_len = 0; crypto_aead_set_reqsize(tfm, sizeof(struct ccp_aes_req_ctx)); return 0; } static void ccp_aes_gcm_cra_exit(struct crypto_tfm *tfm) { } static struct aead_alg ccp_aes_gcm_defaults = { .setkey = ccp_aes_gcm_setkey, .setauthsize = ccp_aes_gcm_setauthsize, .encrypt = ccp_aes_gcm_encrypt, .decrypt = ccp_aes_gcm_decrypt, .init = ccp_aes_gcm_cra_init, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, .base = { .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ccp_ctx), .cra_priority = CCP_CRA_PRIORITY, .cra_type = &crypto_ablkcipher_type, .cra_exit = ccp_aes_gcm_cra_exit, .cra_module = THIS_MODULE, }, }; struct ccp_aes_aead_def { enum ccp_aes_mode mode; unsigned int version; const char *name; const char *driver_name; unsigned int blocksize; unsigned int ivsize; struct aead_alg *alg_defaults; }; static struct ccp_aes_aead_def aes_aead_algs[] = { { .mode = CCP_AES_MODE_GHASH, .version = CCP_VERSION(5, 0), .name = "gcm(aes)", .driver_name = "gcm-aes-ccp", .blocksize = 1, .ivsize = AES_BLOCK_SIZE, .alg_defaults = &ccp_aes_gcm_defaults, }, }; static int ccp_register_aes_aead(struct list_head *head, const struct ccp_aes_aead_def *def) { struct ccp_crypto_aead *ccp_aead; struct aead_alg *alg; int ret; ccp_aead = kzalloc(sizeof(*ccp_aead), GFP_KERNEL); if (!ccp_aead) return -ENOMEM; INIT_LIST_HEAD(&ccp_aead->entry); ccp_aead->mode = def->mode; /* Copy the defaults and override as necessary */ alg = &ccp_aead->alg; *alg = *def->alg_defaults; snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", def->driver_name); alg->base.cra_blocksize = def->blocksize; alg->base.cra_ablkcipher.ivsize = def->ivsize; ret = crypto_register_aead(alg); if (ret) { pr_err("%s ablkcipher algorithm registration error (%d)\n", alg->base.cra_name, ret); kfree(ccp_aead); return ret; } list_add(&ccp_aead->entry, head); return 0; } int ccp_register_aes_aeads(struct list_head *head) { int i, ret; unsigned int ccpversion = ccp_version(); for (i = 0; i < ARRAY_SIZE(aes_aead_algs); i++) { if (aes_aead_algs[i].version > ccpversion) continue; ret = ccp_register_aes_aead(head, &aes_aead_algs[i]); if (ret) return ret; } return 0; }