// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 HiSilicon Limited. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sec.h" #include "sec_crypto.h" #define SEC_PRIORITY 4001 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE) #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE) #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE) #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE) #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE) /* SEC sqe(bd) bit operational relative MACRO */ #define SEC_DE_OFFSET 1 #define SEC_CIPHER_OFFSET 4 #define SEC_SCENE_OFFSET 3 #define SEC_DST_SGL_OFFSET 2 #define SEC_SRC_SGL_OFFSET 7 #define SEC_CKEY_OFFSET 9 #define SEC_CMODE_OFFSET 12 #define SEC_AKEY_OFFSET 5 #define SEC_AEAD_ALG_OFFSET 11 #define SEC_AUTH_OFFSET 6 #define SEC_DE_OFFSET_V3 9 #define SEC_SCENE_OFFSET_V3 5 #define SEC_CKEY_OFFSET_V3 13 #define SEC_CTR_CNT_OFFSET 25 #define SEC_CTR_CNT_ROLLOVER 2 #define SEC_SRC_SGL_OFFSET_V3 11 #define SEC_DST_SGL_OFFSET_V3 14 #define SEC_CALG_OFFSET_V3 4 #define SEC_AKEY_OFFSET_V3 9 #define SEC_MAC_OFFSET_V3 4 #define SEC_AUTH_ALG_OFFSET_V3 15 #define SEC_CIPHER_AUTH_V3 0xbf #define SEC_AUTH_CIPHER_V3 0x40 #define SEC_FLAG_OFFSET 7 #define SEC_FLAG_MASK 0x0780 #define SEC_TYPE_MASK 0x0F #define SEC_DONE_MASK 0x0001 #define SEC_ICV_MASK 0x000E #define SEC_SQE_LEN_RATE_MASK 0x3 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth)) #define SEC_SGL_SGE_NR 128 #define SEC_CIPHER_AUTH 0xfe #define SEC_AUTH_CIPHER 0x1 #define SEC_MAX_MAC_LEN 64 #define SEC_MAX_AAD_LEN 65535 #define SEC_MAX_CCM_AAD_LEN 65279 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth)) #define SEC_PBUF_SZ 512 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE) #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \ SEC_MAX_MAC_LEN * 2) #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG) #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM) #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \ SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM)) #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \ SEC_PBUF_LEFT_SZ(depth)) #define SEC_SQE_LEN_RATE 4 #define SEC_SQE_CFLAG 2 #define SEC_SQE_AEAD_FLAG 3 #define SEC_SQE_DONE 0x1 #define SEC_ICV_ERR 0x2 #define MIN_MAC_LEN 4 #define MAC_LEN_MASK 0x1U #define MAX_INPUT_DATA_LEN 0xFFFE00 #define BITS_MASK 0xFF #define BYTE_BITS 0x8 #define SEC_XTS_NAME_SZ 0x3 #define IV_CM_CAL_NUM 2 #define IV_CL_MASK 0x7 #define IV_CL_MIN 2 #define IV_CL_MID 4 #define IV_CL_MAX 8 #define IV_FLAGS_OFFSET 0x6 #define IV_CM_OFFSET 0x3 #define IV_LAST_BYTE1 1 #define IV_LAST_BYTE2 2 #define IV_LAST_BYTE_MASK 0xFF #define IV_CTR_INIT 0x1 #define IV_BYTE_OFFSET 0x8 struct sec_skcipher { u64 alg_msk; struct skcipher_alg alg; }; struct sec_aead { u64 alg_msk; struct aead_alg alg; }; /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */ static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req) { if (req->c_req.encrypt) return (u32)atomic_inc_return(&ctx->enc_qcyclic) % ctx->hlf_q_num; return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num + ctx->hlf_q_num; } static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req) { if (req->c_req.encrypt) atomic_dec(&ctx->enc_qcyclic); else atomic_dec(&ctx->dec_qcyclic); } static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx) { int req_id; spin_lock_bh(&qp_ctx->req_lock); req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC); spin_unlock_bh(&qp_ctx->req_lock); if (unlikely(req_id < 0)) { dev_err(req->ctx->dev, "alloc req id fail!\n"); return req_id; } req->qp_ctx = qp_ctx; qp_ctx->req_list[req_id] = req; return req_id; } static void sec_free_req_id(struct sec_req *req) { struct sec_qp_ctx *qp_ctx = req->qp_ctx; int req_id = req->req_id; if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) { dev_err(req->ctx->dev, "free request id invalid!\n"); return; } qp_ctx->req_list[req_id] = NULL; req->qp_ctx = NULL; spin_lock_bh(&qp_ctx->req_lock); idr_remove(&qp_ctx->req_idr, req_id); spin_unlock_bh(&qp_ctx->req_lock); } static u8 pre_parse_finished_bd(struct bd_status *status, void *resp) { struct sec_sqe *bd = resp; status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK; status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1; status->flag = (le16_to_cpu(bd->type2.done_flag) & SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; status->tag = le16_to_cpu(bd->type2.tag); status->err_type = bd->type2.error_type; return bd->type_cipher_auth & SEC_TYPE_MASK; } static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp) { struct sec_sqe3 *bd3 = resp; status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK; status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1; status->flag = (le16_to_cpu(bd3->done_flag) & SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; status->tag = le64_to_cpu(bd3->tag); status->err_type = bd3->error_type; return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK; } static int sec_cb_status_check(struct sec_req *req, struct bd_status *status) { struct sec_ctx *ctx = req->ctx; if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) { dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n", req->err_type, status->done); return -EIO; } if (unlikely(ctx->alg_type == SEC_SKCIPHER)) { if (unlikely(status->flag != SEC_SQE_CFLAG)) { dev_err_ratelimited(ctx->dev, "flag[%u]\n", status->flag); return -EIO; } } else if (unlikely(ctx->alg_type == SEC_AEAD)) { if (unlikely(status->flag != SEC_SQE_AEAD_FLAG || status->icv == SEC_ICV_ERR)) { dev_err_ratelimited(ctx->dev, "flag[%u], icv[%u]\n", status->flag, status->icv); return -EBADMSG; } } return 0; } static void sec_req_cb(struct hisi_qp *qp, void *resp) { struct sec_qp_ctx *qp_ctx = qp->qp_ctx; struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx; u8 type_supported = qp_ctx->ctx->type_supported; struct bd_status status; struct sec_ctx *ctx; struct sec_req *req; int err; u8 type; if (type_supported == SEC_BD_TYPE2) { type = pre_parse_finished_bd(&status, resp); req = qp_ctx->req_list[status.tag]; } else { type = pre_parse_finished_bd3(&status, resp); req = (void *)(uintptr_t)status.tag; } if (unlikely(type != type_supported)) { atomic64_inc(&dfx->err_bd_cnt); pr_err("err bd type [%u]\n", type); return; } if (unlikely(!req)) { atomic64_inc(&dfx->invalid_req_cnt); atomic_inc(&qp->qp_status.used); return; } req->err_type = status.err_type; ctx = req->ctx; err = sec_cb_status_check(req, &status); if (err) atomic64_inc(&dfx->done_flag_cnt); atomic64_inc(&dfx->recv_cnt); ctx->req_op->buf_unmap(ctx, req); ctx->req_op->callback(ctx, req, err); } static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req) { struct sec_qp_ctx *qp_ctx = req->qp_ctx; int ret; if (ctx->fake_req_limit <= atomic_read(&qp_ctx->qp->qp_status.used) && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)) return -EBUSY; spin_lock_bh(&qp_ctx->req_lock); ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe); if (ctx->fake_req_limit <= atomic_read(&qp_ctx->qp->qp_status.used) && !ret) { list_add_tail(&req->backlog_head, &qp_ctx->backlog); atomic64_inc(&ctx->sec->debug.dfx.send_cnt); atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt); spin_unlock_bh(&qp_ctx->req_lock); return -EBUSY; } spin_unlock_bh(&qp_ctx->req_lock); if (unlikely(ret == -EBUSY)) return -ENOBUFS; if (likely(!ret)) { ret = -EINPROGRESS; atomic64_inc(&ctx->sec->debug.dfx.send_cnt); } return ret; } /* Get DMA memory resources */ static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res) { u16 q_depth = res->depth; int i; res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), &res->c_ivin_dma, GFP_KERNEL); if (!res->c_ivin) return -ENOMEM; for (i = 1; i < q_depth; i++) { res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE; res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE; } return 0; } static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res) { if (res->c_ivin) dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), res->c_ivin, res->c_ivin_dma); } static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res) { u16 q_depth = res->depth; int i; res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), &res->a_ivin_dma, GFP_KERNEL); if (!res->a_ivin) return -ENOMEM; for (i = 1; i < q_depth; i++) { res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE; res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE; } return 0; } static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res) { if (res->a_ivin) dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), res->a_ivin, res->a_ivin_dma); } static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res) { u16 q_depth = res->depth; int i; res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1, &res->out_mac_dma, GFP_KERNEL); if (!res->out_mac) return -ENOMEM; for (i = 1; i < q_depth; i++) { res[i].out_mac_dma = res->out_mac_dma + i * (SEC_MAX_MAC_LEN << 1); res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1); } return 0; } static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res) { if (res->out_mac) dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1, res->out_mac, res->out_mac_dma); } static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res) { if (res->pbuf) dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth), res->pbuf, res->pbuf_dma); } /* * To improve performance, pbuffer is used for * small packets (< 512Bytes) as IOMMU translation using. */ static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res) { u16 q_depth = res->depth; int size = SEC_PBUF_PAGE_NUM(q_depth); int pbuf_page_offset; int i, j, k; res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth), &res->pbuf_dma, GFP_KERNEL); if (!res->pbuf) return -ENOMEM; /* * SEC_PBUF_PKG contains data pbuf, iv and * out_mac : * Every PAGE contains six SEC_PBUF_PKG * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG * So we need SEC_PBUF_PAGE_NUM numbers of PAGE * for the SEC_TOTAL_PBUF_SZ */ for (i = 0; i <= size; i++) { pbuf_page_offset = PAGE_SIZE * i; for (j = 0; j < SEC_PBUF_NUM; j++) { k = i * SEC_PBUF_NUM + j; if (k == q_depth) break; res[k].pbuf = res->pbuf + j * SEC_PBUF_PKG + pbuf_page_offset; res[k].pbuf_dma = res->pbuf_dma + j * SEC_PBUF_PKG + pbuf_page_offset; } } return 0; } static int sec_alg_resource_alloc(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { struct sec_alg_res *res = qp_ctx->res; struct device *dev = ctx->dev; int ret; ret = sec_alloc_civ_resource(dev, res); if (ret) return ret; if (ctx->alg_type == SEC_AEAD) { ret = sec_alloc_aiv_resource(dev, res); if (ret) goto alloc_aiv_fail; ret = sec_alloc_mac_resource(dev, res); if (ret) goto alloc_mac_fail; } if (ctx->pbuf_supported) { ret = sec_alloc_pbuf_resource(dev, res); if (ret) { dev_err(dev, "fail to alloc pbuf dma resource!\n"); goto alloc_pbuf_fail; } } return 0; alloc_pbuf_fail: if (ctx->alg_type == SEC_AEAD) sec_free_mac_resource(dev, qp_ctx->res); alloc_mac_fail: if (ctx->alg_type == SEC_AEAD) sec_free_aiv_resource(dev, res); alloc_aiv_fail: sec_free_civ_resource(dev, res); return ret; } static void sec_alg_resource_free(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { struct device *dev = ctx->dev; sec_free_civ_resource(dev, qp_ctx->res); if (ctx->pbuf_supported) sec_free_pbuf_resource(dev, qp_ctx->res); if (ctx->alg_type == SEC_AEAD) sec_free_mac_resource(dev, qp_ctx->res); } static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { u16 q_depth = qp_ctx->qp->sq_depth; struct device *dev = ctx->dev; int ret = -ENOMEM; qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL); if (!qp_ctx->req_list) return ret; qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL); if (!qp_ctx->res) goto err_free_req_list; qp_ctx->res->depth = q_depth; qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); if (IS_ERR(qp_ctx->c_in_pool)) { dev_err(dev, "fail to create sgl pool for input!\n"); goto err_free_res; } qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); if (IS_ERR(qp_ctx->c_out_pool)) { dev_err(dev, "fail to create sgl pool for output!\n"); goto err_free_c_in_pool; } ret = sec_alg_resource_alloc(ctx, qp_ctx); if (ret) goto err_free_c_out_pool; return 0; err_free_c_out_pool: hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); err_free_c_in_pool: hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); err_free_res: kfree(qp_ctx->res); err_free_req_list: kfree(qp_ctx->req_list); return ret; } static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { struct device *dev = ctx->dev; sec_alg_resource_free(ctx, qp_ctx); hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); kfree(qp_ctx->res); kfree(qp_ctx->req_list); } static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx, int qp_ctx_id, int alg_type) { struct sec_qp_ctx *qp_ctx; struct hisi_qp *qp; int ret; qp_ctx = &ctx->qp_ctx[qp_ctx_id]; qp = ctx->qps[qp_ctx_id]; qp->req_type = 0; qp->qp_ctx = qp_ctx; qp_ctx->qp = qp; qp_ctx->ctx = ctx; qp->req_cb = sec_req_cb; spin_lock_init(&qp_ctx->req_lock); idr_init(&qp_ctx->req_idr); INIT_LIST_HEAD(&qp_ctx->backlog); ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx); if (ret) goto err_destroy_idr; ret = hisi_qm_start_qp(qp, 0); if (ret < 0) goto err_resource_free; return 0; err_resource_free: sec_free_qp_ctx_resource(ctx, qp_ctx); err_destroy_idr: idr_destroy(&qp_ctx->req_idr); return ret; } static void sec_release_qp_ctx(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { hisi_qm_stop_qp(qp_ctx->qp); sec_free_qp_ctx_resource(ctx, qp_ctx); idr_destroy(&qp_ctx->req_idr); } static int sec_ctx_base_init(struct sec_ctx *ctx) { struct sec_dev *sec; int i, ret; ctx->qps = sec_create_qps(); if (!ctx->qps) { pr_err("Can not create sec qps!\n"); return -ENODEV; } sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm); ctx->sec = sec; ctx->dev = &sec->qm.pdev->dev; ctx->hlf_q_num = sec->ctx_q_num >> 1; ctx->pbuf_supported = ctx->sec->iommu_used; /* Half of queue depth is taken as fake requests limit in the queue. */ ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1; ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx), GFP_KERNEL); if (!ctx->qp_ctx) { ret = -ENOMEM; goto err_destroy_qps; } for (i = 0; i < sec->ctx_q_num; i++) { ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0); if (ret) goto err_sec_release_qp_ctx; } return 0; err_sec_release_qp_ctx: for (i = i - 1; i >= 0; i--) sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); kfree(ctx->qp_ctx); err_destroy_qps: sec_destroy_qps(ctx->qps, sec->ctx_q_num); return ret; } static void sec_ctx_base_uninit(struct sec_ctx *ctx) { int i; for (i = 0; i < ctx->sec->ctx_q_num; i++) sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num); kfree(ctx->qp_ctx); } static int sec_cipher_init(struct sec_ctx *ctx) { struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE, &c_ctx->c_key_dma, GFP_KERNEL); if (!c_ctx->c_key) return -ENOMEM; return 0; } static void sec_cipher_uninit(struct sec_ctx *ctx) { struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE); dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE, c_ctx->c_key, c_ctx->c_key_dma); } static int sec_auth_init(struct sec_ctx *ctx) { struct sec_auth_ctx *a_ctx = &ctx->a_ctx; a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, &a_ctx->a_key_dma, GFP_KERNEL); if (!a_ctx->a_key) return -ENOMEM; return 0; } static void sec_auth_uninit(struct sec_ctx *ctx) { struct sec_auth_ctx *a_ctx = &ctx->a_ctx; memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE); dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, a_ctx->a_key, a_ctx->a_key_dma); } static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm) { const char *alg = crypto_tfm_alg_name(&tfm->base); struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; c_ctx->fallback = false; /* Currently, only XTS mode need fallback tfm when using 192bit key */ if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ))) return 0; c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(c_ctx->fbtfm)) { pr_err("failed to alloc xts mode fallback tfm!\n"); return PTR_ERR(c_ctx->fbtfm); } return 0; } static int sec_skcipher_init(struct crypto_skcipher *tfm) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; ctx->alg_type = SEC_SKCIPHER; crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req)); ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm); if (ctx->c_ctx.ivsize > SEC_IV_SIZE) { pr_err("get error skcipher iv size!\n"); return -EINVAL; } ret = sec_ctx_base_init(ctx); if (ret) return ret; ret = sec_cipher_init(ctx); if (ret) goto err_cipher_init; ret = sec_skcipher_fbtfm_init(tfm); if (ret) goto err_fbtfm_init; return 0; err_fbtfm_init: sec_cipher_uninit(ctx); err_cipher_init: sec_ctx_base_uninit(ctx); return ret; } static void sec_skcipher_uninit(struct crypto_skcipher *tfm) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); if (ctx->c_ctx.fbtfm) crypto_free_sync_skcipher(ctx->c_ctx.fbtfm); sec_cipher_uninit(ctx); sec_ctx_base_uninit(ctx); } static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen, const enum sec_cmode c_mode) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; int ret; ret = verify_skcipher_des3_key(tfm, key); if (ret) return ret; switch (keylen) { case SEC_DES3_2KEY_SIZE: c_ctx->c_key_len = SEC_CKEY_3DES_2KEY; break; case SEC_DES3_3KEY_SIZE: c_ctx->c_key_len = SEC_CKEY_3DES_3KEY; break; default: return -EINVAL; } return 0; } static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx, const u32 keylen, const enum sec_cmode c_mode) { if (c_mode == SEC_CMODE_XTS) { switch (keylen) { case SEC_XTS_MIN_KEY_SIZE: c_ctx->c_key_len = SEC_CKEY_128BIT; break; case SEC_XTS_MID_KEY_SIZE: c_ctx->fallback = true; break; case SEC_XTS_MAX_KEY_SIZE: c_ctx->c_key_len = SEC_CKEY_256BIT; break; default: pr_err("hisi_sec2: xts mode key error!\n"); return -EINVAL; } } else { if (c_ctx->c_alg == SEC_CALG_SM4 && keylen != AES_KEYSIZE_128) { pr_err("hisi_sec2: sm4 key error!\n"); return -EINVAL; } else { switch (keylen) { case AES_KEYSIZE_128: c_ctx->c_key_len = SEC_CKEY_128BIT; break; case AES_KEYSIZE_192: c_ctx->c_key_len = SEC_CKEY_192BIT; break; case AES_KEYSIZE_256: c_ctx->c_key_len = SEC_CKEY_256BIT; break; default: pr_err("hisi_sec2: aes key error!\n"); return -EINVAL; } } } return 0; } static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen, const enum sec_calg c_alg, const enum sec_cmode c_mode) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; struct device *dev = ctx->dev; int ret; if (c_mode == SEC_CMODE_XTS) { ret = xts_verify_key(tfm, key, keylen); if (ret) { dev_err(dev, "xts mode key err!\n"); return ret; } } c_ctx->c_alg = c_alg; c_ctx->c_mode = c_mode; switch (c_alg) { case SEC_CALG_3DES: ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode); break; case SEC_CALG_AES: case SEC_CALG_SM4: ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); break; default: return -EINVAL; } if (ret) { dev_err(dev, "set sec key err!\n"); return ret; } memcpy(c_ctx->c_key, key, keylen); if (c_ctx->fallback && c_ctx->fbtfm) { ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen); if (ret) { dev_err(dev, "failed to set fallback skcipher key!\n"); return ret; } } return 0; } #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \ static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\ u32 keylen) \ { \ return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \ } GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB) GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC) GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS) GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB) GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB) GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR) GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB) GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC) GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS) GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC) GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB) GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB) GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR) static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req, struct scatterlist *src) { struct sec_aead_req *a_req = &req->aead_req; struct aead_request *aead_req = a_req->aead_req; struct sec_cipher_req *c_req = &req->c_req; struct sec_qp_ctx *qp_ctx = req->qp_ctx; struct device *dev = ctx->dev; int copy_size, pbuf_length; int req_id = req->req_id; struct crypto_aead *tfm; size_t authsize; u8 *mac_offset; if (ctx->alg_type == SEC_AEAD) copy_size = aead_req->cryptlen + aead_req->assoclen; else copy_size = c_req->c_len; pbuf_length = sg_copy_to_buffer(src, sg_nents(src), qp_ctx->res[req_id].pbuf, copy_size); if (unlikely(pbuf_length != copy_size)) { dev_err(dev, "copy src data to pbuf error!\n"); return -EINVAL; } if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { tfm = crypto_aead_reqtfm(aead_req); authsize = crypto_aead_authsize(tfm); mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize; memcpy(a_req->out_mac, mac_offset, authsize); } req->in_dma = qp_ctx->res[req_id].pbuf_dma; c_req->c_out_dma = req->in_dma; return 0; } static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req, struct scatterlist *dst) { struct aead_request *aead_req = req->aead_req.aead_req; struct sec_cipher_req *c_req = &req->c_req; struct sec_qp_ctx *qp_ctx = req->qp_ctx; int copy_size, pbuf_length; int req_id = req->req_id; if (ctx->alg_type == SEC_AEAD) copy_size = c_req->c_len + aead_req->assoclen; else copy_size = c_req->c_len; pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst), qp_ctx->res[req_id].pbuf, copy_size); if (unlikely(pbuf_length != copy_size)) dev_err(ctx->dev, "copy pbuf data to dst error!\n"); } static int sec_aead_mac_init(struct sec_aead_req *req) { struct aead_request *aead_req = req->aead_req; struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); size_t authsize = crypto_aead_authsize(tfm); u8 *mac_out = req->out_mac; struct scatterlist *sgl = aead_req->src; size_t copy_size; off_t skip_size; /* Copy input mac */ skip_size = aead_req->assoclen + aead_req->cryptlen - authsize; copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out, authsize, skip_size); if (unlikely(copy_size != authsize)) return -EINVAL; return 0; } static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req, struct scatterlist *src, struct scatterlist *dst) { struct sec_cipher_req *c_req = &req->c_req; struct sec_aead_req *a_req = &req->aead_req; struct sec_qp_ctx *qp_ctx = req->qp_ctx; struct sec_alg_res *res = &qp_ctx->res[req->req_id]; struct device *dev = ctx->dev; int ret; if (req->use_pbuf) { c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET; c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET; if (ctx->alg_type == SEC_AEAD) { a_req->a_ivin = res->a_ivin; a_req->a_ivin_dma = res->a_ivin_dma; a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET; a_req->out_mac_dma = res->pbuf_dma + SEC_PBUF_MAC_OFFSET; } ret = sec_cipher_pbuf_map(ctx, req, src); return ret; } c_req->c_ivin = res->c_ivin; c_req->c_ivin_dma = res->c_ivin_dma; if (ctx->alg_type == SEC_AEAD) { a_req->a_ivin = res->a_ivin; a_req->a_ivin_dma = res->a_ivin_dma; a_req->out_mac = res->out_mac; a_req->out_mac_dma = res->out_mac_dma; } req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src, qp_ctx->c_in_pool, req->req_id, &req->in_dma); if (IS_ERR(req->in)) { dev_err(dev, "fail to dma map input sgl buffers!\n"); return PTR_ERR(req->in); } if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { ret = sec_aead_mac_init(a_req); if (unlikely(ret)) { dev_err(dev, "fail to init mac data for ICV!\n"); return ret; } } if (dst == src) { c_req->c_out = req->in; c_req->c_out_dma = req->in_dma; } else { c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst, qp_ctx->c_out_pool, req->req_id, &c_req->c_out_dma); if (IS_ERR(c_req->c_out)) { dev_err(dev, "fail to dma map output sgl buffers!\n"); hisi_acc_sg_buf_unmap(dev, src, req->in); return PTR_ERR(c_req->c_out); } } return 0; } static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req, struct scatterlist *src, struct scatterlist *dst) { struct sec_cipher_req *c_req = &req->c_req; struct device *dev = ctx->dev; if (req->use_pbuf) { sec_cipher_pbuf_unmap(ctx, req, dst); } else { if (dst != src) hisi_acc_sg_buf_unmap(dev, src, req->in); hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out); } } static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req) { struct skcipher_request *sq = req->c_req.sk_req; return sec_cipher_map(ctx, req, sq->src, sq->dst); } static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) { struct skcipher_request *sq = req->c_req.sk_req; sec_cipher_unmap(ctx, req, sq->src, sq->dst); } static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx, struct crypto_authenc_keys *keys) { switch (keys->enckeylen) { case AES_KEYSIZE_128: c_ctx->c_key_len = SEC_CKEY_128BIT; break; case AES_KEYSIZE_192: c_ctx->c_key_len = SEC_CKEY_192BIT; break; case AES_KEYSIZE_256: c_ctx->c_key_len = SEC_CKEY_256BIT; break; default: pr_err("hisi_sec2: aead aes key error!\n"); return -EINVAL; } memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen); return 0; } static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx, struct crypto_authenc_keys *keys) { struct crypto_shash *hash_tfm = ctx->hash_tfm; int blocksize, digestsize, ret; if (!keys->authkeylen) { pr_err("hisi_sec2: aead auth key error!\n"); return -EINVAL; } blocksize = crypto_shash_blocksize(hash_tfm); digestsize = crypto_shash_digestsize(hash_tfm); if (keys->authkeylen > blocksize) { ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey, keys->authkeylen, ctx->a_key); if (ret) { pr_err("hisi_sec2: aead auth digest error!\n"); return -EINVAL; } ctx->a_key_len = digestsize; } else { memcpy(ctx->a_key, keys->authkey, keys->authkeylen); ctx->a_key_len = keys->authkeylen; } return 0; } static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct sec_ctx *ctx = crypto_tfm_ctx(tfm); struct sec_auth_ctx *a_ctx = &ctx->a_ctx; if (unlikely(a_ctx->fallback_aead_tfm)) return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize); return 0; } static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx, struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(a_ctx->fallback_aead_tfm, crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen); } static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key, const u32 keylen, const enum sec_hash_alg a_alg, const enum sec_calg c_alg, const enum sec_mac_len mac_len, const enum sec_cmode c_mode) { struct sec_ctx *ctx = crypto_aead_ctx(tfm); struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; struct sec_auth_ctx *a_ctx = &ctx->a_ctx; struct device *dev = ctx->dev; struct crypto_authenc_keys keys; int ret; ctx->a_ctx.a_alg = a_alg; ctx->c_ctx.c_alg = c_alg; ctx->a_ctx.mac_len = mac_len; c_ctx->c_mode = c_mode; if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) { ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); if (ret) { dev_err(dev, "set sec aes ccm cipher key err!\n"); return ret; } memcpy(c_ctx->c_key, key, keylen); if (unlikely(a_ctx->fallback_aead_tfm)) { ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen); if (ret) return ret; } return 0; } if (crypto_authenc_extractkeys(&keys, key, keylen)) goto bad_key; ret = sec_aead_aes_set_key(c_ctx, &keys); if (ret) { dev_err(dev, "set sec cipher key err!\n"); goto bad_key; } ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys); if (ret) { dev_err(dev, "set sec auth key err!\n"); goto bad_key; } if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) || (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) { dev_err(dev, "MAC or AUTH key length error!\n"); goto bad_key; } return 0; bad_key: memzero_explicit(&keys, sizeof(struct crypto_authenc_keys)); return -EINVAL; } #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \ static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \ u32 keylen) \ { \ return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\ } GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1, SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC) GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256, SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC) GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512, SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC) GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES, SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES, SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4, SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4, SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req) { struct aead_request *aq = req->aead_req.aead_req; return sec_cipher_map(ctx, req, aq->src, aq->dst); } static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) { struct aead_request *aq = req->aead_req.aead_req; sec_cipher_unmap(ctx, req, aq->src, aq->dst); } static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req) { int ret; ret = ctx->req_op->buf_map(ctx, req); if (unlikely(ret)) return ret; ctx->req_op->do_transfer(ctx, req); ret = ctx->req_op->bd_fill(ctx, req); if (unlikely(ret)) goto unmap_req_buf; return ret; unmap_req_buf: ctx->req_op->buf_unmap(ctx, req); return ret; } static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req) { ctx->req_op->buf_unmap(ctx, req); } static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req) { struct skcipher_request *sk_req = req->c_req.sk_req; struct sec_cipher_req *c_req = &req->c_req; memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize); } static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req) { struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; struct sec_cipher_req *c_req = &req->c_req; struct sec_sqe *sec_sqe = &req->sec_sqe; u8 scene, sa_type, da_type; u8 bd_type, cipher; u8 de = 0; memset(sec_sqe, 0, sizeof(struct sec_sqe)); sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma); sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma); sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma); sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) << SEC_CMODE_OFFSET); sec_sqe->type2.c_alg = c_ctx->c_alg; sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) << SEC_CKEY_OFFSET); bd_type = SEC_BD_TYPE2; if (c_req->encrypt) cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET; else cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET; sec_sqe->type_cipher_auth = bd_type | cipher; /* Set destination and source address type */ if (req->use_pbuf) { sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET; da_type = SEC_PBUF << SEC_DST_SGL_OFFSET; } else { sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET; da_type = SEC_SGL << SEC_DST_SGL_OFFSET; } sec_sqe->sdm_addr_type |= da_type; scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET; if (req->in_dma != c_req->c_out_dma) de = 0x1 << SEC_DE_OFFSET; sec_sqe->sds_sa_type = (de | scene | sa_type); sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len); sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id); return 0; } static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) { struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; struct sec_cipher_req *c_req = &req->c_req; u32 bd_param = 0; u16 cipher; memset(sec_sqe3, 0, sizeof(struct sec_sqe3)); sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma); sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma); sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma); sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) | c_ctx->c_mode; sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) << SEC_CKEY_OFFSET_V3); if (c_req->encrypt) cipher = SEC_CIPHER_ENC; else cipher = SEC_CIPHER_DEC; sec_sqe3->c_icv_key |= cpu_to_le16(cipher); /* Set the CTR counter mode is 128bit rollover */ sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER << SEC_CTR_CNT_OFFSET); if (req->use_pbuf) { bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3; bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3; } else { bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3; bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3; } bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3; if (req->in_dma != c_req->c_out_dma) bd_param |= 0x1 << SEC_DE_OFFSET_V3; bd_param |= SEC_BD_TYPE3; sec_sqe3->bd_param = cpu_to_le32(bd_param); sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len); sec_sqe3->tag = cpu_to_le64(req); return 0; } /* increment counter (128-bit int) */ static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums) { do { --bits; nums += counter[bits]; counter[bits] = nums & BITS_MASK; nums >>= BYTE_BITS; } while (bits && nums); } static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type) { struct aead_request *aead_req = req->aead_req.aead_req; struct skcipher_request *sk_req = req->c_req.sk_req; u32 iv_size = req->ctx->c_ctx.ivsize; struct scatterlist *sgl; unsigned int cryptlen; size_t sz; u8 *iv; if (req->c_req.encrypt) sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst; else sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src; if (alg_type == SEC_SKCIPHER) { iv = sk_req->iv; cryptlen = sk_req->cryptlen; } else { iv = aead_req->iv; cryptlen = aead_req->cryptlen; } if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) { sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size, cryptlen - iv_size); if (unlikely(sz != iv_size)) dev_err(req->ctx->dev, "copy output iv error!\n"); } else { sz = cryptlen / iv_size; if (cryptlen % iv_size) sz += 1; ctr_iv_inc(iv, iv_size, sz); } } static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { struct sec_req *backlog_req = NULL; spin_lock_bh(&qp_ctx->req_lock); if (ctx->fake_req_limit >= atomic_read(&qp_ctx->qp->qp_status.used) && !list_empty(&qp_ctx->backlog)) { backlog_req = list_first_entry(&qp_ctx->backlog, typeof(*backlog_req), backlog_head); list_del(&backlog_req->backlog_head); } spin_unlock_bh(&qp_ctx->req_lock); return backlog_req; } static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req, int err) { struct skcipher_request *sk_req = req->c_req.sk_req; struct sec_qp_ctx *qp_ctx = req->qp_ctx; struct skcipher_request *backlog_sk_req; struct sec_req *backlog_req; sec_free_req_id(req); /* IV output at encrypto of CBC/CTR mode */ if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt) sec_update_iv(req, SEC_SKCIPHER); while (1) { backlog_req = sec_back_req_clear(ctx, qp_ctx); if (!backlog_req) break; backlog_sk_req = backlog_req->c_req.sk_req; backlog_sk_req->base.complete(&backlog_sk_req->base, -EINPROGRESS); atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt); } sk_req->base.complete(&sk_req->base, err); } static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req) { struct aead_request *aead_req = req->aead_req.aead_req; struct sec_cipher_req *c_req = &req->c_req; struct sec_aead_req *a_req = &req->aead_req; size_t authsize = ctx->a_ctx.mac_len; u32 data_size = aead_req->cryptlen; u8 flage = 0; u8 cm, cl; /* the specification has been checked in aead_iv_demension_check() */ cl = c_req->c_ivin[0] + 1; c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00; memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl); c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT; /* the last 3bit is L' */ flage |= c_req->c_ivin[0] & IV_CL_MASK; /* the M' is bit3~bit5, the Flags is bit6 */ cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM; flage |= cm << IV_CM_OFFSET; if (aead_req->assoclen) flage |= 0x01 << IV_FLAGS_OFFSET; memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize); a_req->a_ivin[0] = flage; /* * the last 32bit is counter's initial number, * but the nonce uses the first 16bit * the tail 16bit fill with the cipher length */ if (!c_req->encrypt) data_size = aead_req->cryptlen - authsize; a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = data_size & IV_LAST_BYTE_MASK; data_size >>= IV_BYTE_OFFSET; a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] = data_size & IV_LAST_BYTE_MASK; } static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req) { struct aead_request *aead_req = req->aead_req.aead_req; struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); size_t authsize = crypto_aead_authsize(tfm); struct sec_cipher_req *c_req = &req->c_req; struct sec_aead_req *a_req = &req->aead_req; memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize); if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) { /* * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter}, * the counter must set to 0x01 */ ctx->a_ctx.mac_len = authsize; /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */ set_aead_auth_iv(ctx, req); } /* GCM 12Byte Cipher_IV == Auth_IV */ if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) { ctx->a_ctx.mac_len = authsize; memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE); } } static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir, struct sec_req *req, struct sec_sqe *sec_sqe) { struct sec_aead_req *a_req = &req->aead_req; struct aead_request *aq = a_req->aead_req; /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len); /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr; sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET; if (dir) sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; else sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen); sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0); sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); } static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir, struct sec_req *req, struct sec_sqe3 *sqe3) { struct sec_aead_req *a_req = &req->aead_req; struct aead_request *aq = a_req->aead_req; /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3); /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ sqe3->a_key_addr = sqe3->c_key_addr; sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); sqe3->auth_mac_key |= SEC_NO_AUTH; if (dir) sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; else sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; sqe3->a_len_key = cpu_to_le32(aq->assoclen); sqe3->auth_src_offset = cpu_to_le16(0x0); sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); } static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir, struct sec_req *req, struct sec_sqe *sec_sqe) { struct sec_aead_req *a_req = &req->aead_req; struct sec_cipher_req *c_req = &req->c_req; struct aead_request *aq = a_req->aead_req; sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma); sec_sqe->type2.mac_key_alg = cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE); sec_sqe->type2.mac_key_alg |= cpu_to_le32((u32)((ctx->a_key_len) / SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET); sec_sqe->type2.mac_key_alg |= cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET); if (dir) { sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET; sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; } else { sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET; sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; } sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen); sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); } static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req) { struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; struct sec_sqe *sec_sqe = &req->sec_sqe; int ret; ret = sec_skcipher_bd_fill(ctx, req); if (unlikely(ret)) { dev_err(ctx->dev, "skcipher bd fill is error!\n"); return ret; } if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || ctx->c_ctx.c_mode == SEC_CMODE_GCM) sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe); else sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe); return 0; } static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir, struct sec_req *req, struct sec_sqe3 *sqe3) { struct sec_aead_req *a_req = &req->aead_req; struct sec_cipher_req *c_req = &req->c_req; struct aead_request *aq = a_req->aead_req; sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma); sqe3->auth_mac_key |= cpu_to_le32((u32)(ctx->mac_len / SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3); sqe3->auth_mac_key |= cpu_to_le32((u32)(ctx->a_key_len / SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3); sqe3->auth_mac_key |= cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3); if (dir) { sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1); sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; } else { sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2); sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; } sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen); sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); } static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) { struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; int ret; ret = sec_skcipher_bd_fill_v3(ctx, req); if (unlikely(ret)) { dev_err(ctx->dev, "skcipher bd3 fill is error!\n"); return ret; } if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || ctx->c_ctx.c_mode == SEC_CMODE_GCM) sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt, req, sec_sqe3); else sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt, req, sec_sqe3); return 0; } static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err) { struct aead_request *a_req = req->aead_req.aead_req; struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); struct sec_aead_req *aead_req = &req->aead_req; struct sec_cipher_req *c_req = &req->c_req; size_t authsize = crypto_aead_authsize(tfm); struct sec_qp_ctx *qp_ctx = req->qp_ctx; struct aead_request *backlog_aead_req; struct sec_req *backlog_req; size_t sz; if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt) sec_update_iv(req, SEC_AEAD); /* Copy output mac */ if (!err && c_req->encrypt) { struct scatterlist *sgl = a_req->dst; sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl), aead_req->out_mac, authsize, a_req->cryptlen + a_req->assoclen); if (unlikely(sz != authsize)) { dev_err(c->dev, "copy out mac err!\n"); err = -EINVAL; } } sec_free_req_id(req); while (1) { backlog_req = sec_back_req_clear(c, qp_ctx); if (!backlog_req) break; backlog_aead_req = backlog_req->aead_req.aead_req; backlog_aead_req->base.complete(&backlog_aead_req->base, -EINPROGRESS); atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt); } a_req->base.complete(&a_req->base, err); } static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req) { sec_free_req_id(req); sec_free_queue_id(ctx, req); } static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req) { struct sec_qp_ctx *qp_ctx; int queue_id; /* To load balance */ queue_id = sec_alloc_queue_id(ctx, req); qp_ctx = &ctx->qp_ctx[queue_id]; req->req_id = sec_alloc_req_id(req, qp_ctx); if (unlikely(req->req_id < 0)) { sec_free_queue_id(ctx, req); return req->req_id; } return 0; } static int sec_process(struct sec_ctx *ctx, struct sec_req *req) { struct sec_cipher_req *c_req = &req->c_req; int ret; ret = sec_request_init(ctx, req); if (unlikely(ret)) return ret; ret = sec_request_transfer(ctx, req); if (unlikely(ret)) goto err_uninit_req; /* Output IV as decrypto */ if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || ctx->c_ctx.c_mode == SEC_CMODE_CTR)) sec_update_iv(req, ctx->alg_type); ret = ctx->req_op->bd_send(ctx, req); if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) || (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { dev_err_ratelimited(ctx->dev, "send sec request failed!\n"); goto err_send_req; } return ret; err_send_req: /* As failing, restore the IV from user */ if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) { if (ctx->alg_type == SEC_SKCIPHER) memcpy(req->c_req.sk_req->iv, c_req->c_ivin, ctx->c_ctx.ivsize); else memcpy(req->aead_req.aead_req->iv, c_req->c_ivin, ctx->c_ctx.ivsize); } sec_request_untransfer(ctx, req); err_uninit_req: sec_request_uninit(ctx, req); return ret; } static const struct sec_req_op sec_skcipher_req_ops = { .buf_map = sec_skcipher_sgl_map, .buf_unmap = sec_skcipher_sgl_unmap, .do_transfer = sec_skcipher_copy_iv, .bd_fill = sec_skcipher_bd_fill, .bd_send = sec_bd_send, .callback = sec_skcipher_callback, .process = sec_process, }; static const struct sec_req_op sec_aead_req_ops = { .buf_map = sec_aead_sgl_map, .buf_unmap = sec_aead_sgl_unmap, .do_transfer = sec_aead_set_iv, .bd_fill = sec_aead_bd_fill, .bd_send = sec_bd_send, .callback = sec_aead_callback, .process = sec_process, }; static const struct sec_req_op sec_skcipher_req_ops_v3 = { .buf_map = sec_skcipher_sgl_map, .buf_unmap = sec_skcipher_sgl_unmap, .do_transfer = sec_skcipher_copy_iv, .bd_fill = sec_skcipher_bd_fill_v3, .bd_send = sec_bd_send, .callback = sec_skcipher_callback, .process = sec_process, }; static const struct sec_req_op sec_aead_req_ops_v3 = { .buf_map = sec_aead_sgl_map, .buf_unmap = sec_aead_sgl_unmap, .do_transfer = sec_aead_set_iv, .bd_fill = sec_aead_bd_fill_v3, .bd_send = sec_bd_send, .callback = sec_aead_callback, .process = sec_process, }; static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; ret = sec_skcipher_init(tfm); if (ret) return ret; if (ctx->sec->qm.ver < QM_HW_V3) { ctx->type_supported = SEC_BD_TYPE2; ctx->req_op = &sec_skcipher_req_ops; } else { ctx->type_supported = SEC_BD_TYPE3; ctx->req_op = &sec_skcipher_req_ops_v3; } return ret; } static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm) { sec_skcipher_uninit(tfm); } static int sec_aead_init(struct crypto_aead *tfm) { struct sec_ctx *ctx = crypto_aead_ctx(tfm); int ret; crypto_aead_set_reqsize(tfm, sizeof(struct sec_req)); ctx->alg_type = SEC_AEAD; ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm); if (ctx->c_ctx.ivsize < SEC_AIV_SIZE || ctx->c_ctx.ivsize > SEC_IV_SIZE) { pr_err("get error aead iv size!\n"); return -EINVAL; } ret = sec_ctx_base_init(ctx); if (ret) return ret; if (ctx->sec->qm.ver < QM_HW_V3) { ctx->type_supported = SEC_BD_TYPE2; ctx->req_op = &sec_aead_req_ops; } else { ctx->type_supported = SEC_BD_TYPE3; ctx->req_op = &sec_aead_req_ops_v3; } ret = sec_auth_init(ctx); if (ret) goto err_auth_init; ret = sec_cipher_init(ctx); if (ret) goto err_cipher_init; return ret; err_cipher_init: sec_auth_uninit(ctx); err_auth_init: sec_ctx_base_uninit(ctx); return ret; } static void sec_aead_exit(struct crypto_aead *tfm) { struct sec_ctx *ctx = crypto_aead_ctx(tfm); sec_cipher_uninit(ctx); sec_auth_uninit(ctx); sec_ctx_base_uninit(ctx); } static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name) { struct sec_ctx *ctx = crypto_aead_ctx(tfm); struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; int ret; ret = sec_aead_init(tfm); if (ret) { pr_err("hisi_sec2: aead init error!\n"); return ret; } auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0); if (IS_ERR(auth_ctx->hash_tfm)) { dev_err(ctx->dev, "aead alloc shash error!\n"); sec_aead_exit(tfm); return PTR_ERR(auth_ctx->hash_tfm); } return 0; } static void sec_aead_ctx_exit(struct crypto_aead *tfm) { struct sec_ctx *ctx = crypto_aead_ctx(tfm); crypto_free_shash(ctx->a_ctx.hash_tfm); sec_aead_exit(tfm); } static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); struct sec_ctx *ctx = crypto_aead_ctx(tfm); struct sec_auth_ctx *a_ctx = &ctx->a_ctx; const char *aead_name = alg->base.cra_name; int ret; ret = sec_aead_init(tfm); if (ret) { dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n"); return ret; } a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); if (IS_ERR(a_ctx->fallback_aead_tfm)) { dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n"); sec_aead_exit(tfm); return PTR_ERR(a_ctx->fallback_aead_tfm); } a_ctx->fallback = false; return 0; } static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm) { struct sec_ctx *ctx = crypto_aead_ctx(tfm); crypto_free_aead(ctx->a_ctx.fallback_aead_tfm); sec_aead_exit(tfm); } static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm) { return sec_aead_ctx_init(tfm, "sha1"); } static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm) { return sec_aead_ctx_init(tfm, "sha256"); } static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm) { return sec_aead_ctx_init(tfm, "sha512"); } static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx, struct sec_req *sreq) { u32 cryptlen = sreq->c_req.sk_req->cryptlen; struct device *dev = ctx->dev; u8 c_mode = ctx->c_ctx.c_mode; int ret = 0; switch (c_mode) { case SEC_CMODE_XTS: if (unlikely(cryptlen < AES_BLOCK_SIZE)) { dev_err(dev, "skcipher XTS mode input length error!\n"); ret = -EINVAL; } break; case SEC_CMODE_ECB: case SEC_CMODE_CBC: if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) { dev_err(dev, "skcipher AES input length error!\n"); ret = -EINVAL; } break; case SEC_CMODE_CFB: case SEC_CMODE_OFB: case SEC_CMODE_CTR: if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) { dev_err(dev, "skcipher HW version error!\n"); ret = -EINVAL; } break; default: ret = -EINVAL; } return ret; } static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq) { struct skcipher_request *sk_req = sreq->c_req.sk_req; struct device *dev = ctx->dev; u8 c_alg = ctx->c_ctx.c_alg; if (unlikely(!sk_req->src || !sk_req->dst || sk_req->cryptlen > MAX_INPUT_DATA_LEN)) { dev_err(dev, "skcipher input param error!\n"); return -EINVAL; } sreq->c_req.c_len = sk_req->cryptlen; if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ) sreq->use_pbuf = true; else sreq->use_pbuf = false; if (c_alg == SEC_CALG_3DES) { if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) { dev_err(dev, "skcipher 3des input length error!\n"); return -EINVAL; } return 0; } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) { return sec_skcipher_cryptlen_ckeck(ctx, sreq); } dev_err(dev, "skcipher algorithm error!\n"); return -EINVAL; } static int sec_skcipher_soft_crypto(struct sec_ctx *ctx, struct skcipher_request *sreq, bool encrypt) { struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm); struct device *dev = ctx->dev; int ret; if (!c_ctx->fbtfm) { dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n"); return -EINVAL; } skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm); /* software need sync mode to do crypto */ skcipher_request_set_callback(subreq, sreq->base.flags, NULL, NULL); skcipher_request_set_crypt(subreq, sreq->src, sreq->dst, sreq->cryptlen, sreq->iv); if (encrypt) ret = crypto_skcipher_encrypt(subreq); else ret = crypto_skcipher_decrypt(subreq); skcipher_request_zero(subreq); return ret; } static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req); struct sec_req *req = skcipher_request_ctx(sk_req); struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; if (!sk_req->cryptlen) { if (ctx->c_ctx.c_mode == SEC_CMODE_XTS) return -EINVAL; return 0; } req->flag = sk_req->base.flags; req->c_req.sk_req = sk_req; req->c_req.encrypt = encrypt; req->ctx = ctx; ret = sec_skcipher_param_check(ctx, req); if (unlikely(ret)) return -EINVAL; if (unlikely(ctx->c_ctx.fallback)) return sec_skcipher_soft_crypto(ctx, sk_req, encrypt); return ctx->req_op->process(ctx, req); } static int sec_skcipher_encrypt(struct skcipher_request *sk_req) { return sec_skcipher_crypto(sk_req, true); } static int sec_skcipher_decrypt(struct skcipher_request *sk_req) { return sec_skcipher_crypto(sk_req, false); } #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \ sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\ {\ .base = {\ .cra_name = sec_cra_name,\ .cra_driver_name = "hisi_sec_"sec_cra_name,\ .cra_priority = SEC_PRIORITY,\ .cra_flags = CRYPTO_ALG_ASYNC |\ CRYPTO_ALG_NEED_FALLBACK,\ .cra_blocksize = blk_size,\ .cra_ctxsize = sizeof(struct sec_ctx),\ .cra_module = THIS_MODULE,\ },\ .init = ctx_init,\ .exit = ctx_exit,\ .setkey = sec_set_key,\ .decrypt = sec_skcipher_decrypt,\ .encrypt = sec_skcipher_encrypt,\ .min_keysize = sec_min_key_size,\ .max_keysize = sec_max_key_size,\ .ivsize = iv_size,\ } #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \ max_key_size, blk_size, iv_size) \ SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \ sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size) static struct sec_skcipher sec_skciphers[] = { { .alg_msk = BIT(0), .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0), }, { .alg_msk = BIT(1), .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), }, { .alg_msk = BIT(2), .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), }, { .alg_msk = BIT(3), .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), }, { .alg_msk = BIT(4), .alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), }, { .alg_msk = BIT(5), .alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), }, { .alg_msk = BIT(12), .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), }, { .alg_msk = BIT(13), .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), }, { .alg_msk = BIT(14), .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), }, { .alg_msk = BIT(15), .alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), }, { .alg_msk = BIT(16), .alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), }, { .alg_msk = BIT(23), .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0), }, { .alg_msk = BIT(24), .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE), }, }; static int aead_iv_demension_check(struct aead_request *aead_req) { u8 cl; cl = aead_req->iv[0] + 1; if (cl < IV_CL_MIN || cl > IV_CL_MAX) return -EINVAL; if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl)) return -EOVERFLOW; return 0; } static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq) { struct aead_request *req = sreq->aead_req.aead_req; struct crypto_aead *tfm = crypto_aead_reqtfm(req); size_t authsize = crypto_aead_authsize(tfm); u8 c_mode = ctx->c_ctx.c_mode; struct device *dev = ctx->dev; int ret; if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN || req->assoclen > SEC_MAX_AAD_LEN)) { dev_err(dev, "aead input spec error!\n"); return -EINVAL; } if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) || (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN || authsize & MAC_LEN_MASK)))) { dev_err(dev, "aead input mac length error!\n"); return -EINVAL; } if (c_mode == SEC_CMODE_CCM) { if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) { dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n"); return -EINVAL; } ret = aead_iv_demension_check(req); if (ret) { dev_err(dev, "aead input iv param error!\n"); return ret; } } if (sreq->c_req.encrypt) sreq->c_req.c_len = req->cryptlen; else sreq->c_req.c_len = req->cryptlen - authsize; if (c_mode == SEC_CMODE_CBC) { if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) { dev_err(dev, "aead crypto length error!\n"); return -EINVAL; } } return 0; } static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq) { struct aead_request *req = sreq->aead_req.aead_req; struct crypto_aead *tfm = crypto_aead_reqtfm(req); size_t authsize = crypto_aead_authsize(tfm); struct device *dev = ctx->dev; u8 c_alg = ctx->c_ctx.c_alg; if (unlikely(!req->src || !req->dst)) { dev_err(dev, "aead input param error!\n"); return -EINVAL; } if (ctx->sec->qm.ver == QM_HW_V2) { if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt && req->cryptlen <= authsize))) { ctx->a_ctx.fallback = true; return -EINVAL; } } /* Support AES or SM4 */ if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) { dev_err(dev, "aead crypto alg error!\n"); return -EINVAL; } if (unlikely(sec_aead_spec_check(ctx, sreq))) return -EINVAL; if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <= SEC_PBUF_SZ) sreq->use_pbuf = true; else sreq->use_pbuf = false; return 0; } static int sec_aead_soft_crypto(struct sec_ctx *ctx, struct aead_request *aead_req, bool encrypt) { struct sec_auth_ctx *a_ctx = &ctx->a_ctx; struct device *dev = ctx->dev; struct aead_request *subreq; int ret; /* Kunpeng920 aead mode not support input 0 size */ if (!a_ctx->fallback_aead_tfm) { dev_err(dev, "aead fallback tfm is NULL!\n"); return -EINVAL; } subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL); if (!subreq) return -ENOMEM; aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm); aead_request_set_callback(subreq, aead_req->base.flags, aead_req->base.complete, aead_req->base.data); aead_request_set_crypt(subreq, aead_req->src, aead_req->dst, aead_req->cryptlen, aead_req->iv); aead_request_set_ad(subreq, aead_req->assoclen); if (encrypt) ret = crypto_aead_encrypt(subreq); else ret = crypto_aead_decrypt(subreq); aead_request_free(subreq); return ret; } static int sec_aead_crypto(struct aead_request *a_req, bool encrypt) { struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); struct sec_req *req = aead_request_ctx(a_req); struct sec_ctx *ctx = crypto_aead_ctx(tfm); int ret; req->flag = a_req->base.flags; req->aead_req.aead_req = a_req; req->c_req.encrypt = encrypt; req->ctx = ctx; ret = sec_aead_param_check(ctx, req); if (unlikely(ret)) { if (ctx->a_ctx.fallback) return sec_aead_soft_crypto(ctx, a_req, encrypt); return -EINVAL; } return ctx->req_op->process(ctx, req); } static int sec_aead_encrypt(struct aead_request *a_req) { return sec_aead_crypto(a_req, true); } static int sec_aead_decrypt(struct aead_request *a_req) { return sec_aead_crypto(a_req, false); } #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\ ctx_exit, blk_size, iv_size, max_authsize)\ {\ .base = {\ .cra_name = sec_cra_name,\ .cra_driver_name = "hisi_sec_"sec_cra_name,\ .cra_priority = SEC_PRIORITY,\ .cra_flags = CRYPTO_ALG_ASYNC |\ CRYPTO_ALG_NEED_FALLBACK,\ .cra_blocksize = blk_size,\ .cra_ctxsize = sizeof(struct sec_ctx),\ .cra_module = THIS_MODULE,\ },\ .init = ctx_init,\ .exit = ctx_exit,\ .setkey = sec_set_key,\ .setauthsize = sec_aead_setauthsize,\ .decrypt = sec_aead_decrypt,\ .encrypt = sec_aead_encrypt,\ .ivsize = iv_size,\ .maxauthsize = max_authsize,\ } static struct sec_aead sec_aeads[] = { { .alg_msk = BIT(6), .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init, sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, AES_BLOCK_SIZE), }, { .alg_msk = BIT(7), .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init, sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, AES_BLOCK_SIZE), }, { .alg_msk = BIT(17), .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init, sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, AES_BLOCK_SIZE), }, { .alg_msk = BIT(18), .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init, sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, AES_BLOCK_SIZE), }, { .alg_msk = BIT(43), .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE), }, { .alg_msk = BIT(44), .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE), }, { .alg_msk = BIT(45), .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE), }, }; static void sec_unregister_skcipher(u64 alg_mask, int end) { int i; for (i = 0; i < end; i++) if (sec_skciphers[i].alg_msk & alg_mask) crypto_unregister_skcipher(&sec_skciphers[i].alg); } static int sec_register_skcipher(u64 alg_mask) { int i, ret, count; count = ARRAY_SIZE(sec_skciphers); for (i = 0; i < count; i++) { if (!(sec_skciphers[i].alg_msk & alg_mask)) continue; ret = crypto_register_skcipher(&sec_skciphers[i].alg); if (ret) goto err; } return 0; err: sec_unregister_skcipher(alg_mask, i); return ret; } static void sec_unregister_aead(u64 alg_mask, int end) { int i; for (i = 0; i < end; i++) if (sec_aeads[i].alg_msk & alg_mask) crypto_unregister_aead(&sec_aeads[i].alg); } static int sec_register_aead(u64 alg_mask) { int i, ret, count; count = ARRAY_SIZE(sec_aeads); for (i = 0; i < count; i++) { if (!(sec_aeads[i].alg_msk & alg_mask)) continue; ret = crypto_register_aead(&sec_aeads[i].alg); if (ret) goto err; } return 0; err: sec_unregister_aead(alg_mask, i); return ret; } int sec_register_to_crypto(struct hisi_qm *qm) { u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW); int ret; ret = sec_register_skcipher(alg_mask); if (ret) return ret; ret = sec_register_aead(alg_mask); if (ret) sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); return ret; } void sec_unregister_from_crypto(struct hisi_qm *qm) { u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW); sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads)); sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); }