/* * Copyright (C) 2017 Marvell * * Antoine Tenart * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include "safexcel.h" enum safexcel_cipher_direction { SAFEXCEL_ENCRYPT, SAFEXCEL_DECRYPT, }; struct safexcel_cipher_ctx { struct safexcel_context base; struct safexcel_crypto_priv *priv; u32 mode; __le32 key[8]; unsigned int key_len; }; struct safexcel_cipher_req { enum safexcel_cipher_direction direction; bool needs_inv; }; static void safexcel_cipher_token(struct safexcel_cipher_ctx *ctx, struct crypto_async_request *async, struct safexcel_command_desc *cdesc, u32 length) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_token *token; unsigned offset = 0; if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) { offset = AES_BLOCK_SIZE / sizeof(u32); memcpy(cdesc->control_data.token, req->iv, AES_BLOCK_SIZE); cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD; } token = (struct safexcel_token *)(cdesc->control_data.token + offset); token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION; token[0].packet_length = length; token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET | EIP197_TOKEN_STAT_LAST_HASH; token[0].instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_CRYTO | EIP197_TOKEN_INS_TYPE_OUTPUT; } static int safexcel_aes_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; struct crypto_aes_ctx aes; int ret, i; ret = crypto_aes_expand_key(&aes, key, len); if (ret) { crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return ret; } if (priv->version == EIP197 && ctx->base.ctxr_dma) { for (i = 0; i < len / sizeof(u32); i++) { if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < len / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = len; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_context_control(struct safexcel_cipher_ctx *ctx, struct crypto_async_request *async, struct safexcel_command_desc *cdesc) { struct safexcel_crypto_priv *priv = ctx->priv; struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); int ctrl_size; if (sreq->direction == SAFEXCEL_ENCRYPT) cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT; else cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_IN; cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN; cdesc->control_data.control1 |= ctx->mode; switch (ctx->key_len) { case AES_KEYSIZE_128: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128; ctrl_size = 4; break; case AES_KEYSIZE_192: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192; ctrl_size = 6; break; case AES_KEYSIZE_256: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256; ctrl_size = 8; break; default: dev_err(priv->dev, "aes keysize not supported: %u\n", ctx->key_len); return -EINVAL; } cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size); return 0; } static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_result_desc *rdesc; int ndesc = 0; *ret = 0; spin_lock_bh(&priv->ring[ring].egress_lock); do { rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "cipher: result: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); break; } if (rdesc->result_data.error_code) { dev_err(priv->dev, "cipher: result: result descriptor error (%d)\n", rdesc->result_data.error_code); *ret = -EIO; } ndesc++; } while (!rdesc->last_seg); safexcel_complete(priv, ring); spin_unlock_bh(&priv->ring[ring].egress_lock); if (req->src == req->dst) { dma_unmap_sg(priv->dev, req->src, sg_nents_for_len(req->src, req->cryptlen), DMA_BIDIRECTIONAL); } else { dma_unmap_sg(priv->dev, req->src, sg_nents_for_len(req->src, req->cryptlen), DMA_TO_DEVICE); dma_unmap_sg(priv->dev, req->dst, sg_nents_for_len(req->dst, req->cryptlen), DMA_FROM_DEVICE); } *should_complete = true; return ndesc; } static int safexcel_aes_send(struct crypto_async_request *async, int ring, struct safexcel_request *request, int *commands, int *results) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_crypto_priv *priv = ctx->priv; struct safexcel_command_desc *cdesc; struct safexcel_result_desc *rdesc; struct scatterlist *sg; int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = req->cryptlen; int i, ret = 0; if (req->src == req->dst) { nr_src = dma_map_sg(priv->dev, req->src, sg_nents_for_len(req->src, req->cryptlen), DMA_BIDIRECTIONAL); nr_dst = nr_src; if (!nr_src) return -EINVAL; } else { nr_src = dma_map_sg(priv->dev, req->src, sg_nents_for_len(req->src, req->cryptlen), DMA_TO_DEVICE); if (!nr_src) return -EINVAL; nr_dst = dma_map_sg(priv->dev, req->dst, sg_nents_for_len(req->dst, req->cryptlen), DMA_FROM_DEVICE); if (!nr_dst) { dma_unmap_sg(priv->dev, req->src, sg_nents_for_len(req->src, req->cryptlen), DMA_TO_DEVICE); return -EINVAL; } } memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len); spin_lock_bh(&priv->ring[ring].egress_lock); /* command descriptors */ for_each_sg(req->src, sg, nr_src, i) { int len = sg_dma_len(sg); /* Do not overflow the request */ if (queued - len < 0) len = queued; cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len), sg_dma_address(sg), len, req->cryptlen, ctx->base.ctxr_dma); if (IS_ERR(cdesc)) { /* No space left in the command descriptor ring */ ret = PTR_ERR(cdesc); goto cdesc_rollback; } n_cdesc++; if (n_cdesc == 1) { safexcel_context_control(ctx, async, cdesc); safexcel_cipher_token(ctx, async, cdesc, req->cryptlen); } queued -= len; if (!queued) break; } /* result descriptors */ for_each_sg(req->dst, sg, nr_dst, i) { bool first = !i, last = (i == nr_dst - 1); u32 len = sg_dma_len(sg); rdesc = safexcel_add_rdesc(priv, ring, first, last, sg_dma_address(sg), len); if (IS_ERR(rdesc)) { /* No space left in the result descriptor ring */ ret = PTR_ERR(rdesc); goto rdesc_rollback; } n_rdesc++; } spin_unlock_bh(&priv->ring[ring].egress_lock); request->req = &req->base; *commands = n_cdesc; *results = n_rdesc; return 0; rdesc_rollback: for (i = 0; i < n_rdesc; i++) safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr); cdesc_rollback: for (i = 0; i < n_cdesc; i++) safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); spin_unlock_bh(&priv->ring[ring].egress_lock); if (req->src == req->dst) { dma_unmap_sg(priv->dev, req->src, sg_nents_for_len(req->src, req->cryptlen), DMA_BIDIRECTIONAL); } else { dma_unmap_sg(priv->dev, req->src, sg_nents_for_len(req->src, req->cryptlen), DMA_TO_DEVICE); dma_unmap_sg(priv->dev, req->dst, sg_nents_for_len(req->dst, req->cryptlen), DMA_FROM_DEVICE); } return ret; } static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_result_desc *rdesc; int ndesc = 0, enq_ret; *ret = 0; spin_lock_bh(&priv->ring[ring].egress_lock); do { rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "cipher: invalidate: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); break; } if (rdesc->result_data.error_code) { dev_err(priv->dev, "cipher: invalidate: result descriptor error (%d)\n", rdesc->result_data.error_code); *ret = -EIO; } ndesc++; } while (!rdesc->last_seg); safexcel_complete(priv, ring); spin_unlock_bh(&priv->ring[ring].egress_lock); if (ctx->base.exit_inv) { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); *should_complete = true; return ndesc; } ring = safexcel_select_ring(priv); ctx->base.ring = ring; spin_lock_bh(&priv->ring[ring].queue_lock); enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async); spin_unlock_bh(&priv->ring[ring].queue_lock); if (enq_ret != -EINPROGRESS) *ret = enq_ret; queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); *should_complete = false; return ndesc; } static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); int err; if (sreq->needs_inv) { sreq->needs_inv = false; err = safexcel_handle_inv_result(priv, ring, async, should_complete, ret); } else { err = safexcel_handle_req_result(priv, ring, async, should_complete, ret); } return err; } static int safexcel_cipher_send_inv(struct crypto_async_request *async, int ring, struct safexcel_request *request, int *commands, int *results) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_crypto_priv *priv = ctx->priv; int ret; ret = safexcel_invalidate_cache(async, priv, ctx->base.ctxr_dma, ring, request); if (unlikely(ret)) return ret; *commands = 1; *results = 1; return 0; } static int safexcel_send(struct crypto_async_request *async, int ring, struct safexcel_request *request, int *commands, int *results) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); struct safexcel_crypto_priv *priv = ctx->priv; int ret; BUG_ON(priv->version == EIP97 && sreq->needs_inv); if (sreq->needs_inv) ret = safexcel_cipher_send_inv(async, ring, request, commands, results); else ret = safexcel_aes_send(async, ring, request, commands, results); return ret; } static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; SKCIPHER_REQUEST_ON_STACK(req, __crypto_skcipher_cast(tfm)); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); struct safexcel_inv_result result = {}; int ring = ctx->base.ring; memset(req, 0, sizeof(struct skcipher_request)); /* create invalidation request */ init_completion(&result.completion); skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, safexcel_inv_complete, &result); skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm)); ctx = crypto_tfm_ctx(req->base.tfm); ctx->base.exit_inv = true; sreq->needs_inv = true; spin_lock_bh(&priv->ring[ring].queue_lock); crypto_enqueue_request(&priv->ring[ring].queue, &req->base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); wait_for_completion(&result.completion); if (result.error) { dev_warn(priv->dev, "cipher: sync: invalidate: completion error %d\n", result.error); return result.error; } return 0; } static int safexcel_aes(struct skcipher_request *req, enum safexcel_cipher_direction dir, u32 mode) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); struct safexcel_crypto_priv *priv = ctx->priv; int ret, ring; sreq->needs_inv = false; sreq->direction = dir; ctx->mode = mode; if (ctx->base.ctxr) { if (priv->version == EIP197 && ctx->base.needs_inv) { sreq->needs_inv = true; ctx->base.needs_inv = false; } } else { ctx->base.ring = safexcel_select_ring(priv); ctx->base.ctxr = dma_pool_zalloc(priv->context_pool, EIP197_GFP_FLAGS(req->base), &ctx->base.ctxr_dma); if (!ctx->base.ctxr) return -ENOMEM; } ring = ctx->base.ring; spin_lock_bh(&priv->ring[ring].queue_lock); ret = crypto_enqueue_request(&priv->ring[ring].queue, &req->base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); return ret; } static int safexcel_ecb_aes_encrypt(struct skcipher_request *req) { return safexcel_aes(req, SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB); } static int safexcel_ecb_aes_decrypt(struct skcipher_request *req) { return safexcel_aes(req, SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB); } static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_alg_template *tmpl = container_of(tfm->__crt_alg, struct safexcel_alg_template, alg.skcipher.base); ctx->priv = tmpl->priv; ctx->base.send = safexcel_send; ctx->base.handle_result = safexcel_handle_result; crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), sizeof(struct safexcel_cipher_req)); return 0; } static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; int ret; memzero_explicit(ctx->key, 8 * sizeof(u32)); /* context not allocated, skip invalidation */ if (!ctx->base.ctxr) return; memzero_explicit(ctx->base.ctxr->data, 8 * sizeof(u32)); if (priv->version == EIP197) { ret = safexcel_cipher_exit_inv(tfm); if (ret) dev_warn(priv->dev, "cipher: invalidation error %d\n", ret); } else { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); } } struct safexcel_alg_template safexcel_alg_ecb_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .alg.skcipher = { .setkey = safexcel_aes_setkey, .encrypt = safexcel_ecb_aes_encrypt, .decrypt = safexcel_ecb_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .base = { .cra_name = "ecb(aes)", .cra_driver_name = "safexcel-ecb-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_cbc_aes_encrypt(struct skcipher_request *req) { return safexcel_aes(req, SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC); } static int safexcel_cbc_aes_decrypt(struct skcipher_request *req) { return safexcel_aes(req, SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC); } struct safexcel_alg_template safexcel_alg_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .alg.skcipher = { .setkey = safexcel_aes_setkey, .encrypt = safexcel_cbc_aes_encrypt, .decrypt = safexcel_cbc_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "cbc(aes)", .cra_driver_name = "safexcel-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, };