// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Marvell * * Antoine Tenart */ #include #include #include #include #include #include #include #include #include #include #include "safexcel.h" struct safexcel_ahash_ctx { struct safexcel_context base; struct safexcel_crypto_priv *priv; u32 alg; u8 key_sz; bool cbcmac; bool do_fallback; bool fb_init_done; bool fb_do_setkey; __le32 ipad[SHA3_512_BLOCK_SIZE / sizeof(__le32)]; __le32 opad[SHA3_512_BLOCK_SIZE / sizeof(__le32)]; struct crypto_cipher *kaes; struct crypto_ahash *fback; struct crypto_shash *shpre; struct shash_desc *shdesc; }; struct safexcel_ahash_req { bool last_req; bool finish; bool hmac; bool needs_inv; bool hmac_zlen; bool len_is_le; bool not_first; bool xcbcmac; int nents; dma_addr_t result_dma; u32 digest; u8 state_sz; /* expected state size, only set once */ u8 block_sz; /* block size, only set once */ u8 digest_sz; /* output digest size, only set once */ __le32 state[SHA3_512_BLOCK_SIZE / sizeof(__le32)] __aligned(sizeof(__le32)); u64 len; u64 processed; u8 cache[HASH_CACHE_SIZE] __aligned(sizeof(u32)); dma_addr_t cache_dma; unsigned int cache_sz; u8 cache_next[HASH_CACHE_SIZE] __aligned(sizeof(u32)); }; static inline u64 safexcel_queued_len(struct safexcel_ahash_req *req) { return req->len - req->processed; } static void safexcel_hash_token(struct safexcel_command_desc *cdesc, u32 input_length, u32 result_length, bool cbcmac) { struct safexcel_token *token = (struct safexcel_token *)cdesc->control_data.token; token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION; token[0].packet_length = input_length; token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH; input_length &= 15; if (unlikely(cbcmac && input_length)) { token[0].stat = 0; token[1].opcode = EIP197_TOKEN_OPCODE_INSERT; token[1].packet_length = 16 - input_length; token[1].stat = EIP197_TOKEN_STAT_LAST_HASH; token[1].instructions = EIP197_TOKEN_INS_TYPE_HASH; } else { token[0].stat = EIP197_TOKEN_STAT_LAST_HASH; eip197_noop_token(&token[1]); } token[2].opcode = EIP197_TOKEN_OPCODE_INSERT; token[2].stat = EIP197_TOKEN_STAT_LAST_HASH | EIP197_TOKEN_STAT_LAST_PACKET; token[2].packet_length = result_length; token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT | EIP197_TOKEN_INS_INSERT_HASH_DIGEST; eip197_noop_token(&token[3]); } static void safexcel_context_control(struct safexcel_ahash_ctx *ctx, struct safexcel_ahash_req *req, struct safexcel_command_desc *cdesc) { struct safexcel_crypto_priv *priv = ctx->priv; u64 count = 0; cdesc->control_data.control0 = ctx->alg; cdesc->control_data.control1 = 0; /* * Copy the input digest if needed, and setup the context * fields. Do this now as we need it to setup the first command * descriptor. */ if (unlikely(req->digest == CONTEXT_CONTROL_DIGEST_XCM)) { if (req->xcbcmac) memcpy(ctx->base.ctxr->data, ctx->ipad, ctx->key_sz); else memcpy(ctx->base.ctxr->data, req->state, req->state_sz); if (!req->finish && req->xcbcmac) cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_XCM | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_NO_FINISH_HASH | CONTEXT_CONTROL_SIZE(req->state_sz / sizeof(u32)); else cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_XCM | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_SIZE(req->state_sz / sizeof(u32)); return; } else if (!req->processed) { /* First - and possibly only - block of basic hash only */ if (req->finish) cdesc->control_data.control0 |= req->digest | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_RESTART_HASH | /* ensure its not 0! */ CONTEXT_CONTROL_SIZE(1); else cdesc->control_data.control0 |= req->digest | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_RESTART_HASH | CONTEXT_CONTROL_NO_FINISH_HASH | /* ensure its not 0! */ CONTEXT_CONTROL_SIZE(1); return; } /* Hash continuation or HMAC, setup (inner) digest from state */ memcpy(ctx->base.ctxr->data, req->state, req->state_sz); if (req->finish) { /* Compute digest count for hash/HMAC finish operations */ if ((req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) || req->hmac_zlen || (req->processed != req->block_sz)) { count = req->processed / EIP197_COUNTER_BLOCK_SIZE; /* This is a hardware limitation, as the * counter must fit into an u32. This represents * a fairly big amount of input data, so we * shouldn't see this. */ if (unlikely(count & 0xffffffff00000000ULL)) { dev_warn(priv->dev, "Input data is too big\n"); return; } } if ((req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) || /* Special case: zero length HMAC */ req->hmac_zlen || /* PE HW < 4.4 cannot do HMAC continue, fake using hash */ (req->processed != req->block_sz)) { /* Basic hash continue operation, need digest + cnt */ cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE((req->state_sz >> 2) + 1) | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_DIGEST_PRECOMPUTED; /* For zero-len HMAC, don't finalize, already padded! */ if (req->hmac_zlen) cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH; cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT; ctx->base.ctxr->data[req->state_sz >> 2] = cpu_to_le32(count); req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; /* Clear zero-length HMAC flag for next operation! */ req->hmac_zlen = false; } else { /* HMAC */ /* Need outer digest for HMAC finalization */ memcpy(ctx->base.ctxr->data + (req->state_sz >> 2), ctx->opad, req->state_sz); /* Single pass HMAC - no digest count */ cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(req->state_sz >> 1) | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_DIGEST_HMAC; } } else { /* Hash continuation, do not finish yet */ cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(req->state_sz >> 2) | CONTEXT_CONTROL_DIGEST_PRECOMPUTED | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_NO_FINISH_HASH; } } static int safexcel_ahash_enqueue(struct ahash_request *areq); static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct safexcel_result_desc *rdesc; struct ahash_request *areq = ahash_request_cast(async); struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq); struct safexcel_ahash_req *sreq = ahash_request_ctx(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash); u64 cache_len; *ret = 0; rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "hash: result: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); } else { *ret = safexcel_rdesc_check_errors(priv, rdesc); } safexcel_complete(priv, ring); if (sreq->nents) { dma_unmap_sg(priv->dev, areq->src, sreq->nents, DMA_TO_DEVICE); sreq->nents = 0; } if (sreq->result_dma) { dma_unmap_single(priv->dev, sreq->result_dma, sreq->digest_sz, DMA_FROM_DEVICE); sreq->result_dma = 0; } if (sreq->cache_dma) { dma_unmap_single(priv->dev, sreq->cache_dma, sreq->cache_sz, DMA_TO_DEVICE); sreq->cache_dma = 0; sreq->cache_sz = 0; } if (sreq->finish) { if (sreq->hmac && (sreq->digest != CONTEXT_CONTROL_DIGEST_HMAC)) { /* Faking HMAC using hash - need to do outer hash */ memcpy(sreq->cache, sreq->state, crypto_ahash_digestsize(ahash)); memcpy(sreq->state, ctx->opad, sreq->digest_sz); sreq->len = sreq->block_sz + crypto_ahash_digestsize(ahash); sreq->processed = sreq->block_sz; sreq->hmac = 0; if (priv->flags & EIP197_TRC_CACHE) ctx->base.needs_inv = true; areq->nbytes = 0; safexcel_ahash_enqueue(areq); *should_complete = false; /* Not done yet */ return 1; } if (unlikely(sreq->digest == CONTEXT_CONTROL_DIGEST_XCM && ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_CRC32)) { /* Undo final XOR with 0xffffffff ...*/ *(__le32 *)areq->result = ~sreq->state[0]; } else { memcpy(areq->result, sreq->state, crypto_ahash_digestsize(ahash)); } } cache_len = safexcel_queued_len(sreq); if (cache_len) memcpy(sreq->cache, sreq->cache_next, cache_len); *should_complete = true; return 1; } static int safexcel_ahash_send_req(struct crypto_async_request *async, int ring, int *commands, int *results) { struct ahash_request *areq = ahash_request_cast(async); struct safexcel_ahash_req *req = ahash_request_ctx(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_crypto_priv *priv = ctx->priv; struct safexcel_command_desc *cdesc, *first_cdesc = NULL; struct safexcel_result_desc *rdesc; struct scatterlist *sg; struct safexcel_token *dmmy; int i, extra = 0, n_cdesc = 0, ret = 0, cache_len, skip = 0; u64 queued, len; queued = safexcel_queued_len(req); if (queued <= HASH_CACHE_SIZE) cache_len = queued; else cache_len = queued - areq->nbytes; if (!req->finish && !req->last_req) { /* If this is not the last request and the queued data does not * fit into full cache blocks, cache it for the next send call. */ extra = queued & (HASH_CACHE_SIZE - 1); /* If this is not the last request and the queued data * is a multiple of a block, cache the last one for now. */ if (!extra) extra = HASH_CACHE_SIZE; sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), req->cache_next, extra, areq->nbytes - extra); queued -= extra; if (!queued) { *commands = 0; *results = 0; return 0; } extra = 0; } if (unlikely(req->xcbcmac && req->processed > AES_BLOCK_SIZE)) { if (unlikely(cache_len < AES_BLOCK_SIZE)) { /* * Cache contains less than 1 full block, complete. */ extra = AES_BLOCK_SIZE - cache_len; if (queued > cache_len) { /* More data follows: borrow bytes */ u64 tmp = queued - cache_len; skip = min_t(u64, tmp, extra); sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), req->cache + cache_len, skip, 0); } extra -= skip; memset(req->cache + cache_len + skip, 0, extra); if (!ctx->cbcmac && extra) { // 10- padding for XCBCMAC & CMAC req->cache[cache_len + skip] = 0x80; // HW will use K2 iso K3 - compensate! for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) ((__be32 *)req->cache)[i] ^= cpu_to_be32(le32_to_cpu( ctx->ipad[i] ^ ctx->ipad[i + 4])); } cache_len = AES_BLOCK_SIZE; queued = queued + extra; } /* XCBC continue: XOR previous result into 1st word */ crypto_xor(req->cache, (const u8 *)req->state, AES_BLOCK_SIZE); } len = queued; /* Add a command descriptor for the cached data, if any */ if (cache_len) { req->cache_dma = dma_map_single(priv->dev, req->cache, cache_len, DMA_TO_DEVICE); if (dma_mapping_error(priv->dev, req->cache_dma)) return -EINVAL; req->cache_sz = cache_len; first_cdesc = safexcel_add_cdesc(priv, ring, 1, (cache_len == len), req->cache_dma, cache_len, len, ctx->base.ctxr_dma, &dmmy); if (IS_ERR(first_cdesc)) { ret = PTR_ERR(first_cdesc); goto unmap_cache; } n_cdesc++; queued -= cache_len; if (!queued) goto send_command; } /* Now handle the current ahash request buffer(s) */ req->nents = dma_map_sg(priv->dev, areq->src, sg_nents_for_len(areq->src, areq->nbytes), DMA_TO_DEVICE); if (!req->nents) { ret = -ENOMEM; goto cdesc_rollback; } for_each_sg(areq->src, sg, req->nents, i) { int sglen = sg_dma_len(sg); if (unlikely(sglen <= skip)) { skip -= sglen; continue; } /* Do not overflow the request */ if ((queued + skip) <= sglen) sglen = queued; else sglen -= skip; cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - sglen), sg_dma_address(sg) + skip, sglen, len, ctx->base.ctxr_dma, &dmmy); if (IS_ERR(cdesc)) { ret = PTR_ERR(cdesc); goto unmap_sg; } if (!n_cdesc) first_cdesc = cdesc; n_cdesc++; queued -= sglen; if (!queued) break; skip = 0; } send_command: /* Setup the context options */ safexcel_context_control(ctx, req, first_cdesc); /* Add the token */ safexcel_hash_token(first_cdesc, len, req->digest_sz, ctx->cbcmac); req->result_dma = dma_map_single(priv->dev, req->state, req->digest_sz, DMA_FROM_DEVICE); if (dma_mapping_error(priv->dev, req->result_dma)) { ret = -EINVAL; goto unmap_sg; } /* Add a result descriptor */ rdesc = safexcel_add_rdesc(priv, ring, 1, 1, req->result_dma, req->digest_sz); if (IS_ERR(rdesc)) { ret = PTR_ERR(rdesc); goto unmap_result; } safexcel_rdr_req_set(priv, ring, rdesc, &areq->base); req->processed += len - extra; *commands = n_cdesc; *results = 1; return 0; unmap_result: dma_unmap_single(priv->dev, req->result_dma, req->digest_sz, DMA_FROM_DEVICE); unmap_sg: if (req->nents) { dma_unmap_sg(priv->dev, areq->src, req->nents, DMA_TO_DEVICE); req->nents = 0; } cdesc_rollback: for (i = 0; i < n_cdesc; i++) safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); unmap_cache: if (req->cache_dma) { dma_unmap_single(priv->dev, req->cache_dma, req->cache_sz, DMA_TO_DEVICE); req->cache_dma = 0; req->cache_sz = 0; } return ret; } static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct safexcel_result_desc *rdesc; struct ahash_request *areq = ahash_request_cast(async); struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash); int enq_ret; *ret = 0; rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "hash: invalidate: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); } else { *ret = safexcel_rdesc_check_errors(priv, rdesc); } safexcel_complete(priv, ring); if (ctx->base.exit_inv) { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); *should_complete = true; return 1; } ring = safexcel_select_ring(priv); ctx->base.ring = ring; spin_lock_bh(&priv->ring[ring].queue_lock); enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async); spin_unlock_bh(&priv->ring[ring].queue_lock); if (enq_ret != -EINPROGRESS) *ret = enq_ret; queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); *should_complete = false; return 1; } static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct ahash_request *areq = ahash_request_cast(async); struct safexcel_ahash_req *req = ahash_request_ctx(areq); int err; BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && req->needs_inv); if (req->needs_inv) { req->needs_inv = false; err = safexcel_handle_inv_result(priv, ring, async, should_complete, ret); } else { err = safexcel_handle_req_result(priv, ring, async, should_complete, ret); } return err; } static int safexcel_ahash_send_inv(struct crypto_async_request *async, int ring, int *commands, int *results) { struct ahash_request *areq = ahash_request_cast(async); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); int ret; ret = safexcel_invalidate_cache(async, ctx->priv, ctx->base.ctxr_dma, ring); if (unlikely(ret)) return ret; *commands = 1; *results = 1; return 0; } static int safexcel_ahash_send(struct crypto_async_request *async, int ring, int *commands, int *results) { struct ahash_request *areq = ahash_request_cast(async); struct safexcel_ahash_req *req = ahash_request_ctx(areq); int ret; if (req->needs_inv) ret = safexcel_ahash_send_inv(async, ring, commands, results); else ret = safexcel_ahash_send_req(async, ring, commands, results); return ret; } static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; EIP197_REQUEST_ON_STACK(req, ahash, EIP197_AHASH_REQ_SIZE); struct safexcel_ahash_req *rctx = ahash_request_ctx(req); struct safexcel_inv_result result = {}; int ring = ctx->base.ring; memset(req, 0, EIP197_AHASH_REQ_SIZE); /* create invalidation request */ init_completion(&result.completion); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, safexcel_inv_complete, &result); ahash_request_set_tfm(req, __crypto_ahash_cast(tfm)); ctx = crypto_tfm_ctx(req->base.tfm); ctx->base.exit_inv = true; rctx->needs_inv = true; spin_lock_bh(&priv->ring[ring].queue_lock); crypto_enqueue_request(&priv->ring[ring].queue, &req->base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); wait_for_completion(&result.completion); if (result.error) { dev_warn(priv->dev, "hash: completion error (%d)\n", result.error); return result.error; } return 0; } /* safexcel_ahash_cache: cache data until at least one request can be sent to * the engine, aka. when there is at least 1 block size in the pipe. */ static int safexcel_ahash_cache(struct ahash_request *areq) { struct safexcel_ahash_req *req = ahash_request_ctx(areq); u64 cache_len; /* cache_len: everything accepted by the driver but not sent yet, * tot sz handled by update() - last req sz - tot sz handled by send() */ cache_len = safexcel_queued_len(req); /* * In case there isn't enough bytes to proceed (less than a * block size), cache the data until we have enough. */ if (cache_len + areq->nbytes <= HASH_CACHE_SIZE) { sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), req->cache + cache_len, areq->nbytes, 0); return 0; } /* We couldn't cache all the data */ return -E2BIG; } static int safexcel_ahash_enqueue(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); struct safexcel_crypto_priv *priv = ctx->priv; int ret, ring; req->needs_inv = false; if (ctx->base.ctxr) { if (priv->flags & EIP197_TRC_CACHE && !ctx->base.needs_inv && /* invalidate for *any* non-XCBC continuation */ ((req->not_first && !req->xcbcmac) || /* invalidate if (i)digest changed */ memcmp(ctx->base.ctxr->data, req->state, req->state_sz) || /* invalidate for HMAC finish with odigest changed */ (req->finish && req->hmac && memcmp(ctx->base.ctxr->data + (req->state_sz>>2), ctx->opad, req->state_sz)))) /* * We're still setting needs_inv here, even though it is * cleared right away, because the needs_inv flag can be * set in other functions and we want to keep the same * logic. */ ctx->base.needs_inv = true; if (ctx->base.needs_inv) { ctx->base.needs_inv = false; req->needs_inv = true; } } else { ctx->base.ring = safexcel_select_ring(priv); ctx->base.ctxr = dma_pool_zalloc(priv->context_pool, EIP197_GFP_FLAGS(areq->base), &ctx->base.ctxr_dma); if (!ctx->base.ctxr) return -ENOMEM; } req->not_first = true; ring = ctx->base.ring; spin_lock_bh(&priv->ring[ring].queue_lock); ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); return ret; } static int safexcel_ahash_update(struct ahash_request *areq) { struct safexcel_ahash_req *req = ahash_request_ctx(areq); int ret; /* If the request is 0 length, do nothing */ if (!areq->nbytes) return 0; /* Add request to the cache if it fits */ ret = safexcel_ahash_cache(areq); /* Update total request length */ req->len += areq->nbytes; /* If not all data could fit into the cache, go process the excess. * Also go process immediately for an HMAC IV precompute, which * will never be finished at all, but needs to be processed anyway. */ if ((ret && !req->finish) || req->last_req) return safexcel_ahash_enqueue(areq); return 0; } static int safexcel_ahash_final(struct ahash_request *areq) { struct safexcel_ahash_req *req = ahash_request_ctx(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); req->finish = true; if (unlikely(!req->len && !areq->nbytes)) { /* * If we have an overall 0 length *hash* request: * The HW cannot do 0 length hash, so we provide the correct * result directly here. */ if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5) memcpy(areq->result, md5_zero_message_hash, MD5_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1) memcpy(areq->result, sha1_zero_message_hash, SHA1_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224) memcpy(areq->result, sha224_zero_message_hash, SHA224_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256) memcpy(areq->result, sha256_zero_message_hash, SHA256_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA384) memcpy(areq->result, sha384_zero_message_hash, SHA384_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA512) memcpy(areq->result, sha512_zero_message_hash, SHA512_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SM3) { memcpy(areq->result, EIP197_SM3_ZEROM_HASH, SM3_DIGEST_SIZE); } return 0; } else if (unlikely(req->digest == CONTEXT_CONTROL_DIGEST_XCM && ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5 && req->len == sizeof(u32) && !areq->nbytes)) { /* Zero length CRC32 */ memcpy(areq->result, ctx->ipad, sizeof(u32)); return 0; } else if (unlikely(ctx->cbcmac && req->len == AES_BLOCK_SIZE && !areq->nbytes)) { /* Zero length CBC MAC */ memset(areq->result, 0, AES_BLOCK_SIZE); return 0; } else if (unlikely(req->xcbcmac && req->len == AES_BLOCK_SIZE && !areq->nbytes)) { /* Zero length (X)CBC/CMAC */ int i; for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) ((__be32 *)areq->result)[i] = cpu_to_be32(le32_to_cpu(ctx->ipad[i + 4]));//K3 areq->result[0] ^= 0x80; // 10- padding crypto_cipher_encrypt_one(ctx->kaes, areq->result, areq->result); return 0; } else if (unlikely(req->hmac && (req->len == req->block_sz) && !areq->nbytes)) { /* * If we have an overall 0 length *HMAC* request: * For HMAC, we need to finalize the inner digest * and then perform the outer hash. */ /* generate pad block in the cache */ /* start with a hash block of all zeroes */ memset(req->cache, 0, req->block_sz); /* set the first byte to 0x80 to 'append a 1 bit' */ req->cache[0] = 0x80; /* add the length in bits in the last 2 bytes */ if (req->len_is_le) { /* Little endian length word (e.g. MD5) */ req->cache[req->block_sz-8] = (req->block_sz << 3) & 255; req->cache[req->block_sz-7] = (req->block_sz >> 5); } else { /* Big endian length word (e.g. any SHA) */ req->cache[req->block_sz-2] = (req->block_sz >> 5); req->cache[req->block_sz-1] = (req->block_sz << 3) & 255; } req->len += req->block_sz; /* plus 1 hash block */ /* Set special zero-length HMAC flag */ req->hmac_zlen = true; /* Finalize HMAC */ req->digest = CONTEXT_CONTROL_DIGEST_HMAC; } else if (req->hmac) { /* Finalize HMAC */ req->digest = CONTEXT_CONTROL_DIGEST_HMAC; } return safexcel_ahash_enqueue(areq); } static int safexcel_ahash_finup(struct ahash_request *areq) { struct safexcel_ahash_req *req = ahash_request_ctx(areq); req->finish = true; safexcel_ahash_update(areq); return safexcel_ahash_final(areq); } static int safexcel_ahash_export(struct ahash_request *areq, void *out) { struct safexcel_ahash_req *req = ahash_request_ctx(areq); struct safexcel_ahash_export_state *export = out; export->len = req->len; export->processed = req->processed; export->digest = req->digest; memcpy(export->state, req->state, req->state_sz); memcpy(export->cache, req->cache, HASH_CACHE_SIZE); return 0; } static int safexcel_ahash_import(struct ahash_request *areq, const void *in) { struct safexcel_ahash_req *req = ahash_request_ctx(areq); const struct safexcel_ahash_export_state *export = in; int ret; ret = crypto_ahash_init(areq); if (ret) return ret; req->len = export->len; req->processed = export->processed; req->digest = export->digest; memcpy(req->cache, export->cache, HASH_CACHE_SIZE); memcpy(req->state, export->state, req->state_sz); return 0; } static int safexcel_ahash_cra_init(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_alg_template *tmpl = container_of(__crypto_ahash_alg(tfm->__crt_alg), struct safexcel_alg_template, alg.ahash); ctx->priv = tmpl->priv; ctx->base.send = safexcel_ahash_send; ctx->base.handle_result = safexcel_handle_result; ctx->fb_do_setkey = false; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct safexcel_ahash_req)); return 0; } static int safexcel_sha1_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA1_DIGEST_SIZE; req->digest_sz = SHA1_DIGEST_SIZE; req->block_sz = SHA1_BLOCK_SIZE; return 0; } static int safexcel_sha1_digest(struct ahash_request *areq) { int ret = safexcel_sha1_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; int ret; /* context not allocated, skip invalidation */ if (!ctx->base.ctxr) return; if (priv->flags & EIP197_TRC_CACHE) { ret = safexcel_ahash_exit_inv(tfm); if (ret) dev_warn(priv->dev, "hash: invalidation error %d\n", ret); } else { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); } } struct safexcel_alg_template safexcel_alg_sha1 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA1, .alg.ahash = { .init = safexcel_sha1_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha1_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha1", .cra_driver_name = "safexcel-sha1", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha1_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, ctx->ipad, SHA1_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA1_BLOCK_SIZE; req->processed = SHA1_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA1_DIGEST_SIZE; req->digest_sz = SHA1_DIGEST_SIZE; req->block_sz = SHA1_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha1_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha1_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_ahash_result { struct completion completion; int error; }; static void safexcel_ahash_complete(struct crypto_async_request *req, int error) { struct safexcel_ahash_result *result = req->data; if (error == -EINPROGRESS) return; result->error = error; complete(&result->completion); } static int safexcel_hmac_init_pad(struct ahash_request *areq, unsigned int blocksize, const u8 *key, unsigned int keylen, u8 *ipad, u8 *opad) { struct safexcel_ahash_result result; struct scatterlist sg; int ret, i; u8 *keydup; if (keylen <= blocksize) { memcpy(ipad, key, keylen); } else { keydup = kmemdup(key, keylen, GFP_KERNEL); if (!keydup) return -ENOMEM; ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG, safexcel_ahash_complete, &result); sg_init_one(&sg, keydup, keylen); ahash_request_set_crypt(areq, &sg, ipad, keylen); init_completion(&result.completion); ret = crypto_ahash_digest(areq); if (ret == -EINPROGRESS || ret == -EBUSY) { wait_for_completion_interruptible(&result.completion); ret = result.error; } /* Avoid leaking */ memzero_explicit(keydup, keylen); kfree(keydup); if (ret) return ret; keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq)); } memset(ipad + keylen, 0, blocksize - keylen); memcpy(opad, ipad, blocksize); for (i = 0; i < blocksize; i++) { ipad[i] ^= HMAC_IPAD_VALUE; opad[i] ^= HMAC_OPAD_VALUE; } return 0; } static int safexcel_hmac_init_iv(struct ahash_request *areq, unsigned int blocksize, u8 *pad, void *state) { struct safexcel_ahash_result result; struct safexcel_ahash_req *req; struct scatterlist sg; int ret; ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG, safexcel_ahash_complete, &result); sg_init_one(&sg, pad, blocksize); ahash_request_set_crypt(areq, &sg, pad, blocksize); init_completion(&result.completion); ret = crypto_ahash_init(areq); if (ret) return ret; req = ahash_request_ctx(areq); req->hmac = true; req->last_req = true; ret = crypto_ahash_update(areq); if (ret && ret != -EINPROGRESS && ret != -EBUSY) return ret; wait_for_completion_interruptible(&result.completion); if (result.error) return result.error; return crypto_ahash_export(areq, state); } int safexcel_hmac_setkey(const char *alg, const u8 *key, unsigned int keylen, void *istate, void *ostate) { struct ahash_request *areq; struct crypto_ahash *tfm; unsigned int blocksize; u8 *ipad, *opad; int ret; tfm = crypto_alloc_ahash(alg, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); areq = ahash_request_alloc(tfm, GFP_KERNEL); if (!areq) { ret = -ENOMEM; goto free_ahash; } crypto_ahash_clear_flags(tfm, ~0); blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); ipad = kcalloc(2, blocksize, GFP_KERNEL); if (!ipad) { ret = -ENOMEM; goto free_request; } opad = ipad + blocksize; ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad); if (ret) goto free_ipad; ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate); if (ret) goto free_ipad; ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate); free_ipad: kfree(ipad); free_request: ahash_request_free(areq); free_ahash: crypto_free_ahash(tfm); return ret; } static int safexcel_hmac_alg_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen, const char *alg, unsigned int state_sz) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct safexcel_crypto_priv *priv = ctx->priv; struct safexcel_ahash_export_state istate, ostate; int ret; ret = safexcel_hmac_setkey(alg, key, keylen, &istate, &ostate); if (ret) return ret; if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr && (memcmp(ctx->ipad, istate.state, state_sz) || memcmp(ctx->opad, ostate.state, state_sz))) ctx->base.needs_inv = true; memcpy(ctx->ipad, &istate.state, state_sz); memcpy(ctx->opad, &ostate.state, state_sz); return 0; } static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha1", SHA1_DIGEST_SIZE); } struct safexcel_alg_template safexcel_alg_hmac_sha1 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA1, .alg.ahash = { .init = safexcel_hmac_sha1_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha1_digest, .setkey = safexcel_hmac_sha1_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "safexcel-hmac-sha1", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha256_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA256_DIGEST_SIZE; req->digest_sz = SHA256_DIGEST_SIZE; req->block_sz = SHA256_BLOCK_SIZE; return 0; } static int safexcel_sha256_digest(struct ahash_request *areq) { int ret = safexcel_sha256_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sha256 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_256, .alg.ahash = { .init = safexcel_sha256_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha256_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha256", .cra_driver_name = "safexcel-sha256", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha224_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA256_DIGEST_SIZE; req->digest_sz = SHA256_DIGEST_SIZE; req->block_sz = SHA256_BLOCK_SIZE; return 0; } static int safexcel_sha224_digest(struct ahash_request *areq) { int ret = safexcel_sha224_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sha224 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_256, .alg.ahash = { .init = safexcel_sha224_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha224_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha224", .cra_driver_name = "safexcel-sha224", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha224_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha224", SHA256_DIGEST_SIZE); } static int safexcel_hmac_sha224_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, ctx->ipad, SHA256_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA256_BLOCK_SIZE; req->processed = SHA256_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA256_DIGEST_SIZE; req->digest_sz = SHA256_DIGEST_SIZE; req->block_sz = SHA256_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha224_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha224_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sha224 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_256, .alg.ahash = { .init = safexcel_hmac_sha224_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha224_digest, .setkey = safexcel_hmac_sha224_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha224)", .cra_driver_name = "safexcel-hmac-sha224", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha256", SHA256_DIGEST_SIZE); } static int safexcel_hmac_sha256_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, ctx->ipad, SHA256_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA256_BLOCK_SIZE; req->processed = SHA256_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA256_DIGEST_SIZE; req->digest_sz = SHA256_DIGEST_SIZE; req->block_sz = SHA256_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha256_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha256_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sha256 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_256, .alg.ahash = { .init = safexcel_hmac_sha256_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha256_digest, .setkey = safexcel_hmac_sha256_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "safexcel-hmac-sha256", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha512_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA512_DIGEST_SIZE; req->digest_sz = SHA512_DIGEST_SIZE; req->block_sz = SHA512_BLOCK_SIZE; return 0; } static int safexcel_sha512_digest(struct ahash_request *areq) { int ret = safexcel_sha512_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sha512 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_512, .alg.ahash = { .init = safexcel_sha512_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha512_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha512", .cra_driver_name = "safexcel-sha512", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha384_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA512_DIGEST_SIZE; req->digest_sz = SHA512_DIGEST_SIZE; req->block_sz = SHA512_BLOCK_SIZE; return 0; } static int safexcel_sha384_digest(struct ahash_request *areq) { int ret = safexcel_sha384_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sha384 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_512, .alg.ahash = { .init = safexcel_sha384_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha384_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha384", .cra_driver_name = "safexcel-sha384", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha512_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha512", SHA512_DIGEST_SIZE); } static int safexcel_hmac_sha512_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, ctx->ipad, SHA512_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA512_BLOCK_SIZE; req->processed = SHA512_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA512_DIGEST_SIZE; req->digest_sz = SHA512_DIGEST_SIZE; req->block_sz = SHA512_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha512_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha512_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sha512 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_512, .alg.ahash = { .init = safexcel_hmac_sha512_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha512_digest, .setkey = safexcel_hmac_sha512_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha512)", .cra_driver_name = "safexcel-hmac-sha512", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha384_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha384", SHA512_DIGEST_SIZE); } static int safexcel_hmac_sha384_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, ctx->ipad, SHA512_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA512_BLOCK_SIZE; req->processed = SHA512_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA512_DIGEST_SIZE; req->digest_sz = SHA512_DIGEST_SIZE; req->block_sz = SHA512_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha384_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha384_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sha384 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_512, .alg.ahash = { .init = safexcel_hmac_sha384_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha384_digest, .setkey = safexcel_hmac_sha384_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha384)", .cra_driver_name = "safexcel-hmac-sha384", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_md5_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = MD5_DIGEST_SIZE; req->digest_sz = MD5_DIGEST_SIZE; req->block_sz = MD5_HMAC_BLOCK_SIZE; return 0; } static int safexcel_md5_digest(struct ahash_request *areq) { int ret = safexcel_md5_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_md5 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_MD5, .alg.ahash = { .init = safexcel_md5_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_md5_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "md5", .cra_driver_name = "safexcel-md5", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_md5_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, ctx->ipad, MD5_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = MD5_HMAC_BLOCK_SIZE; req->processed = MD5_HMAC_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = MD5_DIGEST_SIZE; req->digest_sz = MD5_DIGEST_SIZE; req->block_sz = MD5_HMAC_BLOCK_SIZE; req->len_is_le = true; /* MD5 is little endian! ... */ req->hmac = true; return 0; } static int safexcel_hmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-md5", MD5_DIGEST_SIZE); } static int safexcel_hmac_md5_digest(struct ahash_request *areq) { int ret = safexcel_hmac_md5_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_md5 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_MD5, .alg.ahash = { .init = safexcel_hmac_md5_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_md5_digest, .setkey = safexcel_hmac_md5_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(md5)", .cra_driver_name = "safexcel-hmac-md5", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_crc32_cra_init(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); int ret = safexcel_ahash_cra_init(tfm); /* Default 'key' is all zeroes */ memset(ctx->ipad, 0, sizeof(u32)); return ret; } static int safexcel_crc32_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from loaded key */ req->state[0] = (__force __le32)le32_to_cpu(~ctx->ipad[0]); /* Set processed to non-zero to enable invalidation detection */ req->len = sizeof(u32); req->processed = sizeof(u32); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_CRC32; req->digest = CONTEXT_CONTROL_DIGEST_XCM; req->state_sz = sizeof(u32); req->digest_sz = sizeof(u32); req->block_sz = sizeof(u32); return 0; } static int safexcel_crc32_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); if (keylen != sizeof(u32)) return -EINVAL; memcpy(ctx->ipad, key, sizeof(u32)); return 0; } static int safexcel_crc32_digest(struct ahash_request *areq) { return safexcel_crc32_init(areq) ?: safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_crc32 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = 0, .alg.ahash = { .init = safexcel_crc32_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_crc32_digest, .setkey = safexcel_crc32_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = sizeof(u32), .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "crc32", .cra_driver_name = "safexcel-crc32", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_crc32_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_cbcmac_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from loaded keys */ memcpy(req->state, ctx->ipad, ctx->key_sz); /* Set processed to non-zero to enable invalidation detection */ req->len = AES_BLOCK_SIZE; req->processed = AES_BLOCK_SIZE; req->digest = CONTEXT_CONTROL_DIGEST_XCM; req->state_sz = ctx->key_sz; req->digest_sz = AES_BLOCK_SIZE; req->block_sz = AES_BLOCK_SIZE; req->xcbcmac = true; return 0; } static int safexcel_cbcmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct crypto_aes_ctx aes; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) return ret; memset(ctx->ipad, 0, 2 * AES_BLOCK_SIZE); for (i = 0; i < len / sizeof(u32); i++) ctx->ipad[i + 8] = (__force __le32)cpu_to_be32(aes.key_enc[i]); if (len == AES_KEYSIZE_192) { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192; ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE; } else if (len == AES_KEYSIZE_256) { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256; ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE; } else { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128; ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE; } ctx->cbcmac = true; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_cbcmac_digest(struct ahash_request *areq) { return safexcel_cbcmac_init(areq) ?: safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_cbcmac = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = 0, .alg.ahash = { .init = safexcel_cbcmac_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_cbcmac_digest, .setkey = safexcel_cbcmac_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "cbcmac(aes)", .cra_driver_name = "safexcel-cbcmac-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_xcbcmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct crypto_aes_ctx aes; u32 key_tmp[3 * AES_BLOCK_SIZE / sizeof(u32)]; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) return ret; /* precompute the XCBC key material */ crypto_cipher_clear_flags(ctx->kaes, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(ctx->kaes, crypto_ahash_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); ret = crypto_cipher_setkey(ctx->kaes, key, len); crypto_ahash_set_flags(tfm, crypto_cipher_get_flags(ctx->kaes) & CRYPTO_TFM_RES_MASK); if (ret) return ret; crypto_cipher_encrypt_one(ctx->kaes, (u8 *)key_tmp + 2 * AES_BLOCK_SIZE, "\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1"); crypto_cipher_encrypt_one(ctx->kaes, (u8 *)key_tmp, "\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2"); crypto_cipher_encrypt_one(ctx->kaes, (u8 *)key_tmp + AES_BLOCK_SIZE, "\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3"); for (i = 0; i < 3 * AES_BLOCK_SIZE / sizeof(u32); i++) ctx->ipad[i] = cpu_to_le32((__force u32)cpu_to_be32(key_tmp[i])); crypto_cipher_clear_flags(ctx->kaes, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(ctx->kaes, crypto_ahash_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); ret = crypto_cipher_setkey(ctx->kaes, (u8 *)key_tmp + 2 * AES_BLOCK_SIZE, AES_MIN_KEY_SIZE); crypto_ahash_set_flags(tfm, crypto_cipher_get_flags(ctx->kaes) & CRYPTO_TFM_RES_MASK); if (ret) return ret; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128; ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE; ctx->cbcmac = false; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_xcbcmac_cra_init(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_ahash_cra_init(tfm); ctx->kaes = crypto_alloc_cipher("aes", 0, 0); return PTR_ERR_OR_ZERO(ctx->kaes); } static void safexcel_xcbcmac_cra_exit(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_cipher(ctx->kaes); safexcel_ahash_cra_exit(tfm); } struct safexcel_alg_template safexcel_alg_xcbcmac = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = 0, .alg.ahash = { .init = safexcel_cbcmac_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_cbcmac_digest, .setkey = safexcel_xcbcmac_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "xcbc(aes)", .cra_driver_name = "safexcel-xcbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_xcbcmac_cra_init, .cra_exit = safexcel_xcbcmac_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_cmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct crypto_aes_ctx aes; __be64 consts[4]; u64 _const[2]; u8 msb_mask, gfmask; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) return ret; for (i = 0; i < len / sizeof(u32); i++) ctx->ipad[i + 8] = cpu_to_le32((__force u32)cpu_to_be32(aes.key_enc[i])); /* precompute the CMAC key material */ crypto_cipher_clear_flags(ctx->kaes, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(ctx->kaes, crypto_ahash_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); ret = crypto_cipher_setkey(ctx->kaes, key, len); crypto_ahash_set_flags(tfm, crypto_cipher_get_flags(ctx->kaes) & CRYPTO_TFM_RES_MASK); if (ret) return ret; /* code below borrowed from crypto/cmac.c */ /* encrypt the zero block */ memset(consts, 0, AES_BLOCK_SIZE); crypto_cipher_encrypt_one(ctx->kaes, (u8 *)consts, (u8 *)consts); gfmask = 0x87; _const[0] = be64_to_cpu(consts[1]); _const[1] = be64_to_cpu(consts[0]); /* gf(2^128) multiply zero-ciphertext with u and u^2 */ for (i = 0; i < 4; i += 2) { msb_mask = ((s64)_const[1] >> 63) & gfmask; _const[1] = (_const[1] << 1) | (_const[0] >> 63); _const[0] = (_const[0] << 1) ^ msb_mask; consts[i + 0] = cpu_to_be64(_const[1]); consts[i + 1] = cpu_to_be64(_const[0]); } /* end of code borrowed from crypto/cmac.c */ for (i = 0; i < 2 * AES_BLOCK_SIZE / sizeof(u32); i++) ctx->ipad[i] = (__force __le32)cpu_to_be32(((u32 *)consts)[i]); if (len == AES_KEYSIZE_192) { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192; ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE; } else if (len == AES_KEYSIZE_256) { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256; ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE; } else { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128; ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE; } ctx->cbcmac = false; memzero_explicit(&aes, sizeof(aes)); return 0; } struct safexcel_alg_template safexcel_alg_cmac = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = 0, .alg.ahash = { .init = safexcel_cbcmac_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_cbcmac_digest, .setkey = safexcel_cmac_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "cmac(aes)", .cra_driver_name = "safexcel-cmac-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_xcbcmac_cra_init, .cra_exit = safexcel_xcbcmac_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sm3_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SM3_DIGEST_SIZE; req->digest_sz = SM3_DIGEST_SIZE; req->block_sz = SM3_BLOCK_SIZE; return 0; } static int safexcel_sm3_digest(struct ahash_request *areq) { int ret = safexcel_sm3_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sm3 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SM3, .alg.ahash = { .init = safexcel_sm3_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sm3_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sm3", .cra_driver_name = "safexcel-sm3", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SM3_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sm3_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sm3", SM3_DIGEST_SIZE); } static int safexcel_hmac_sm3_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, ctx->ipad, SM3_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SM3_BLOCK_SIZE; req->processed = SM3_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SM3_DIGEST_SIZE; req->digest_sz = SM3_DIGEST_SIZE; req->block_sz = SM3_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sm3_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sm3_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sm3 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SM3, .alg.ahash = { .init = safexcel_hmac_sm3_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sm3_digest, .setkey = safexcel_hmac_sm3_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sm3)", .cra_driver_name = "safexcel-hmac-sm3", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SM3_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha3_224_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_224; req->digest = CONTEXT_CONTROL_DIGEST_INITIAL; req->state_sz = SHA3_224_DIGEST_SIZE; req->digest_sz = SHA3_224_DIGEST_SIZE; req->block_sz = SHA3_224_BLOCK_SIZE; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_sha3_fbcheck(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx(req); int ret = 0; if (ctx->do_fallback) { ahash_request_set_tfm(subreq, ctx->fback); ahash_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); ahash_request_set_crypt(subreq, req->src, req->result, req->nbytes); if (!ctx->fb_init_done) { if (ctx->fb_do_setkey) { /* Set fallback cipher HMAC key */ u8 key[SHA3_224_BLOCK_SIZE]; memcpy(key, ctx->ipad, crypto_ahash_blocksize(ctx->fback) / 2); memcpy(key + crypto_ahash_blocksize(ctx->fback) / 2, ctx->opad, crypto_ahash_blocksize(ctx->fback) / 2); ret = crypto_ahash_setkey(ctx->fback, key, crypto_ahash_blocksize(ctx->fback)); memzero_explicit(key, crypto_ahash_blocksize(ctx->fback)); ctx->fb_do_setkey = false; } ret = ret ?: crypto_ahash_init(subreq); ctx->fb_init_done = true; } } return ret; } static int safexcel_sha3_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx(req); ctx->do_fallback = true; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_update(subreq); } static int safexcel_sha3_final(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx(req); ctx->do_fallback = true; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_final(subreq); } static int safexcel_sha3_finup(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx(req); ctx->do_fallback |= !req->nbytes; if (ctx->do_fallback) /* Update or ex/import happened or len 0, cannot use the HW */ return safexcel_sha3_fbcheck(req) ?: crypto_ahash_finup(subreq); else return safexcel_ahash_finup(req); } static int safexcel_sha3_digest_fallback(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx(req); ctx->do_fallback = true; ctx->fb_init_done = false; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_finup(subreq); } static int safexcel_sha3_224_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_sha3_224_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length hash, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_sha3_export(struct ahash_request *req, void *out) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx(req); ctx->do_fallback = true; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_export(subreq, out); } static int safexcel_sha3_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx(req); ctx->do_fallback = true; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_import(subreq, in); // return safexcel_ahash_import(req, in); } static int safexcel_sha3_cra_init(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_ahash_cra_init(tfm); /* Allocate fallback implementation */ ctx->fback = crypto_alloc_ahash(crypto_tfm_alg_name(tfm), 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fback)) return PTR_ERR(ctx->fback); /* Update statesize from fallback algorithm! */ crypto_hash_alg_common(ahash)->statesize = crypto_ahash_statesize(ctx->fback); crypto_ahash_set_reqsize(ahash, max(sizeof(struct safexcel_ahash_req), sizeof(struct ahash_request) + crypto_ahash_reqsize(ctx->fback))); return 0; } static void safexcel_sha3_cra_exit(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_ahash(ctx->fback); safexcel_ahash_cra_exit(tfm); } struct safexcel_alg_template safexcel_alg_sha3_224 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_sha3_224_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_sha3_224_digest, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_224_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha3-224", .cra_driver_name = "safexcel-sha3-224", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_sha3_cra_init, .cra_exit = safexcel_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha3_256_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_256; req->digest = CONTEXT_CONTROL_DIGEST_INITIAL; req->state_sz = SHA3_256_DIGEST_SIZE; req->digest_sz = SHA3_256_DIGEST_SIZE; req->block_sz = SHA3_256_BLOCK_SIZE; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_sha3_256_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_sha3_256_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length hash, use fallback instead */ return safexcel_sha3_digest_fallback(req); } struct safexcel_alg_template safexcel_alg_sha3_256 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_sha3_256_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_sha3_256_digest, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_256_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha3-256", .cra_driver_name = "safexcel-sha3-256", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_sha3_cra_init, .cra_exit = safexcel_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha3_384_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_384; req->digest = CONTEXT_CONTROL_DIGEST_INITIAL; req->state_sz = SHA3_384_DIGEST_SIZE; req->digest_sz = SHA3_384_DIGEST_SIZE; req->block_sz = SHA3_384_BLOCK_SIZE; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_sha3_384_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_sha3_384_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length hash, use fallback instead */ return safexcel_sha3_digest_fallback(req); } struct safexcel_alg_template safexcel_alg_sha3_384 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_sha3_384_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_sha3_384_digest, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_384_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha3-384", .cra_driver_name = "safexcel-sha3-384", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_sha3_cra_init, .cra_exit = safexcel_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha3_512_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_512; req->digest = CONTEXT_CONTROL_DIGEST_INITIAL; req->state_sz = SHA3_512_DIGEST_SIZE; req->digest_sz = SHA3_512_DIGEST_SIZE; req->block_sz = SHA3_512_BLOCK_SIZE; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_sha3_512_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_sha3_512_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length hash, use fallback instead */ return safexcel_sha3_digest_fallback(req); } struct safexcel_alg_template safexcel_alg_sha3_512 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_sha3_512_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_sha3_512_digest, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_512_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha3-512", .cra_driver_name = "safexcel-sha3-512", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_sha3_cra_init, .cra_exit = safexcel_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha3_cra_init(struct crypto_tfm *tfm, const char *alg) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = safexcel_sha3_cra_init(tfm); if (ret) return ret; /* Allocate precalc basic digest implementation */ ctx->shpre = crypto_alloc_shash(alg, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->shpre)) return PTR_ERR(ctx->shpre); ctx->shdesc = kmalloc(sizeof(*ctx->shdesc) + crypto_shash_descsize(ctx->shpre), GFP_KERNEL); if (!ctx->shdesc) { crypto_free_shash(ctx->shpre); return -ENOMEM; } ctx->shdesc->tfm = ctx->shpre; return 0; } static void safexcel_hmac_sha3_cra_exit(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_ahash(ctx->fback); crypto_free_shash(ctx->shpre); kfree(ctx->shdesc); safexcel_ahash_cra_exit(tfm); } static int safexcel_hmac_sha3_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); int ret = 0; if (keylen > crypto_ahash_blocksize(tfm)) { /* * If the key is larger than the blocksize, then hash it * first using our fallback cipher */ ret = crypto_shash_digest(ctx->shdesc, key, keylen, (u8 *)ctx->ipad); keylen = crypto_shash_digestsize(ctx->shpre); /* * If the digest is larger than half the blocksize, we need to * move the rest to opad due to the way our HMAC infra works. */ if (keylen > crypto_ahash_blocksize(tfm) / 2) /* Buffers overlap, need to use memmove iso memcpy! */ memmove(ctx->opad, (u8 *)ctx->ipad + crypto_ahash_blocksize(tfm) / 2, keylen - crypto_ahash_blocksize(tfm) / 2); } else { /* * Copy the key to our ipad & opad buffers * Note that ipad and opad each contain one half of the key, * to match the existing HMAC driver infrastructure. */ if (keylen <= crypto_ahash_blocksize(tfm) / 2) { memcpy(ctx->ipad, key, keylen); } else { memcpy(ctx->ipad, key, crypto_ahash_blocksize(tfm) / 2); memcpy(ctx->opad, key + crypto_ahash_blocksize(tfm) / 2, keylen - crypto_ahash_blocksize(tfm) / 2); } } /* Pad key with zeroes */ if (keylen <= crypto_ahash_blocksize(tfm) / 2) { memset((u8 *)ctx->ipad + keylen, 0, crypto_ahash_blocksize(tfm) / 2 - keylen); memset(ctx->opad, 0, crypto_ahash_blocksize(tfm) / 2); } else { memset((u8 *)ctx->opad + keylen - crypto_ahash_blocksize(tfm) / 2, 0, crypto_ahash_blocksize(tfm) - keylen); } /* If doing fallback, still need to set the new key! */ ctx->fb_do_setkey = true; return ret; } static int safexcel_hmac_sha3_224_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Copy (half of) the key */ memcpy(req->state, ctx->ipad, SHA3_224_BLOCK_SIZE / 2); /* Start of HMAC should have len == processed == blocksize */ req->len = SHA3_224_BLOCK_SIZE; req->processed = SHA3_224_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_224; req->digest = CONTEXT_CONTROL_DIGEST_HMAC; req->state_sz = SHA3_224_BLOCK_SIZE / 2; req->digest_sz = SHA3_224_DIGEST_SIZE; req->block_sz = SHA3_224_BLOCK_SIZE; req->hmac = true; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_hmac_sha3_224_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_hmac_sha3_224_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length HMAC, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_hmac_sha3_224_cra_init(struct crypto_tfm *tfm) { return safexcel_hmac_sha3_cra_init(tfm, "sha3-224"); } struct safexcel_alg_template safexcel_alg_hmac_sha3_224 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_hmac_sha3_224_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_hmac_sha3_224_digest, .setkey = safexcel_hmac_sha3_setkey, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_224_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha3-224)", .cra_driver_name = "safexcel-hmac-sha3-224", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_hmac_sha3_224_cra_init, .cra_exit = safexcel_hmac_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha3_256_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Copy (half of) the key */ memcpy(req->state, ctx->ipad, SHA3_256_BLOCK_SIZE / 2); /* Start of HMAC should have len == processed == blocksize */ req->len = SHA3_256_BLOCK_SIZE; req->processed = SHA3_256_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_256; req->digest = CONTEXT_CONTROL_DIGEST_HMAC; req->state_sz = SHA3_256_BLOCK_SIZE / 2; req->digest_sz = SHA3_256_DIGEST_SIZE; req->block_sz = SHA3_256_BLOCK_SIZE; req->hmac = true; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_hmac_sha3_256_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_hmac_sha3_256_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length HMAC, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_hmac_sha3_256_cra_init(struct crypto_tfm *tfm) { return safexcel_hmac_sha3_cra_init(tfm, "sha3-256"); } struct safexcel_alg_template safexcel_alg_hmac_sha3_256 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_hmac_sha3_256_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_hmac_sha3_256_digest, .setkey = safexcel_hmac_sha3_setkey, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_256_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha3-256)", .cra_driver_name = "safexcel-hmac-sha3-256", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_hmac_sha3_256_cra_init, .cra_exit = safexcel_hmac_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha3_384_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Copy (half of) the key */ memcpy(req->state, ctx->ipad, SHA3_384_BLOCK_SIZE / 2); /* Start of HMAC should have len == processed == blocksize */ req->len = SHA3_384_BLOCK_SIZE; req->processed = SHA3_384_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_384; req->digest = CONTEXT_CONTROL_DIGEST_HMAC; req->state_sz = SHA3_384_BLOCK_SIZE / 2; req->digest_sz = SHA3_384_DIGEST_SIZE; req->block_sz = SHA3_384_BLOCK_SIZE; req->hmac = true; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_hmac_sha3_384_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_hmac_sha3_384_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length HMAC, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_hmac_sha3_384_cra_init(struct crypto_tfm *tfm) { return safexcel_hmac_sha3_cra_init(tfm, "sha3-384"); } struct safexcel_alg_template safexcel_alg_hmac_sha3_384 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_hmac_sha3_384_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_hmac_sha3_384_digest, .setkey = safexcel_hmac_sha3_setkey, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_384_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha3-384)", .cra_driver_name = "safexcel-hmac-sha3-384", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_hmac_sha3_384_cra_init, .cra_exit = safexcel_hmac_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha3_512_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx(areq); memset(req, 0, sizeof(*req)); /* Copy (half of) the key */ memcpy(req->state, ctx->ipad, SHA3_512_BLOCK_SIZE / 2); /* Start of HMAC should have len == processed == blocksize */ req->len = SHA3_512_BLOCK_SIZE; req->processed = SHA3_512_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_512; req->digest = CONTEXT_CONTROL_DIGEST_HMAC; req->state_sz = SHA3_512_BLOCK_SIZE / 2; req->digest_sz = SHA3_512_DIGEST_SIZE; req->block_sz = SHA3_512_BLOCK_SIZE; req->hmac = true; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_hmac_sha3_512_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_hmac_sha3_512_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length HMAC, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_hmac_sha3_512_cra_init(struct crypto_tfm *tfm) { return safexcel_hmac_sha3_cra_init(tfm, "sha3-512"); } struct safexcel_alg_template safexcel_alg_hmac_sha3_512 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_hmac_sha3_512_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_hmac_sha3_512_digest, .setkey = safexcel_hmac_sha3_setkey, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_512_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha3-512)", .cra_driver_name = "safexcel-hmac-sha3-512", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_hmac_sha3_512_cra_init, .cra_exit = safexcel_hmac_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, };