/* * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * EXYNOS5 INT clock frequency scaling support using DEVFREQ framework * Based on work done by Jonghwan Choi * Support for only EXYNOS5250 is present. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "exynos_ppmu.h" #define MAX_SAFEVOLT 1100000 /* 1.10V */ /* Assume that the bus is saturated if the utilization is 25% */ #define INT_BUS_SATURATION_RATIO 25 enum int_level_idx { LV_0, LV_1, LV_2, LV_3, LV_4, _LV_END }; enum exynos_ppmu_list { PPMU_RIGHT, PPMU_END, }; struct busfreq_data_int { struct device *dev; struct devfreq *devfreq; struct regulator *vdd_int; struct busfreq_ppmu_data ppmu_data; unsigned long curr_freq; bool disabled; struct notifier_block pm_notifier; struct mutex lock; struct pm_qos_request int_req; struct clk *int_clk; }; struct int_bus_opp_table { unsigned int idx; unsigned long clk; unsigned long volt; }; static struct int_bus_opp_table exynos5_int_opp_table[] = { {LV_0, 266000, 1025000}, {LV_1, 200000, 1025000}, {LV_2, 160000, 1025000}, {LV_3, 133000, 1025000}, {LV_4, 100000, 1025000}, {0, 0, 0}, }; static int exynos5_int_setvolt(struct busfreq_data_int *data, unsigned long volt) { return regulator_set_voltage(data->vdd_int, volt, MAX_SAFEVOLT); } static int exynos5_busfreq_int_target(struct device *dev, unsigned long *_freq, u32 flags) { int err = 0; struct platform_device *pdev = container_of(dev, struct platform_device, dev); struct busfreq_data_int *data = platform_get_drvdata(pdev); struct dev_pm_opp *opp; unsigned long old_freq, freq; unsigned long volt; rcu_read_lock(); opp = devfreq_recommended_opp(dev, _freq, flags); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(dev, "%s: Invalid OPP.\n", __func__); return PTR_ERR(opp); } freq = dev_pm_opp_get_freq(opp); volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); old_freq = data->curr_freq; if (old_freq == freq) return 0; dev_dbg(dev, "targeting %lukHz %luuV\n", freq, volt); mutex_lock(&data->lock); if (data->disabled) goto out; if (freq > exynos5_int_opp_table[0].clk) pm_qos_update_request(&data->int_req, freq * 16 / 1000); else pm_qos_update_request(&data->int_req, -1); if (old_freq < freq) err = exynos5_int_setvolt(data, volt); if (err) goto out; err = clk_set_rate(data->int_clk, freq * 1000); if (err) goto out; if (old_freq > freq) err = exynos5_int_setvolt(data, volt); if (err) goto out; data->curr_freq = freq; out: mutex_unlock(&data->lock); return err; } static int exynos5_int_get_dev_status(struct device *dev, struct devfreq_dev_status *stat) { struct platform_device *pdev = container_of(dev, struct platform_device, dev); struct busfreq_data_int *data = platform_get_drvdata(pdev); struct busfreq_ppmu_data *ppmu_data = &data->ppmu_data; int busier_dmc; exynos_read_ppmu(ppmu_data); busier_dmc = exynos_get_busier_ppmu(ppmu_data); stat->current_frequency = data->curr_freq; /* Number of cycles spent on memory access */ stat->busy_time = ppmu_data->ppmu[busier_dmc].count[PPMU_PMNCNT3]; stat->busy_time *= 100 / INT_BUS_SATURATION_RATIO; stat->total_time = ppmu_data->ppmu[busier_dmc].ccnt; return 0; } static struct devfreq_dev_profile exynos5_devfreq_int_profile = { .initial_freq = 160000, .polling_ms = 100, .target = exynos5_busfreq_int_target, .get_dev_status = exynos5_int_get_dev_status, }; static int exynos5250_init_int_tables(struct busfreq_data_int *data) { int i, err = 0; for (i = LV_0; i < _LV_END; i++) { err = dev_pm_opp_add(data->dev, exynos5_int_opp_table[i].clk, exynos5_int_opp_table[i].volt); if (err) { dev_err(data->dev, "Cannot add opp entries.\n"); return err; } } return 0; } static int exynos5_busfreq_int_pm_notifier_event(struct notifier_block *this, unsigned long event, void *ptr) { struct busfreq_data_int *data = container_of(this, struct busfreq_data_int, pm_notifier); struct dev_pm_opp *opp; unsigned long maxfreq = ULONG_MAX; unsigned long freq; unsigned long volt; int err = 0; switch (event) { case PM_SUSPEND_PREPARE: /* Set Fastest and Deactivate DVFS */ mutex_lock(&data->lock); data->disabled = true; rcu_read_lock(); opp = dev_pm_opp_find_freq_floor(data->dev, &maxfreq); if (IS_ERR(opp)) { rcu_read_unlock(); err = PTR_ERR(opp); goto unlock; } freq = dev_pm_opp_get_freq(opp); volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); err = exynos5_int_setvolt(data, volt); if (err) goto unlock; err = clk_set_rate(data->int_clk, freq * 1000); if (err) goto unlock; data->curr_freq = freq; unlock: mutex_unlock(&data->lock); if (err) return NOTIFY_BAD; return NOTIFY_OK; case PM_POST_RESTORE: case PM_POST_SUSPEND: /* Reactivate */ mutex_lock(&data->lock); data->disabled = false; mutex_unlock(&data->lock); return NOTIFY_OK; } return NOTIFY_DONE; } static int exynos5_busfreq_int_probe(struct platform_device *pdev) { struct busfreq_data_int *data; struct busfreq_ppmu_data *ppmu_data; struct dev_pm_opp *opp; struct device *dev = &pdev->dev; struct device_node *np; unsigned long initial_freq; unsigned long initial_volt; int err = 0; int i; data = devm_kzalloc(&pdev->dev, sizeof(struct busfreq_data_int), GFP_KERNEL); if (data == NULL) { dev_err(dev, "Cannot allocate memory.\n"); return -ENOMEM; } ppmu_data = &data->ppmu_data; ppmu_data->ppmu_end = PPMU_END; ppmu_data->ppmu = devm_kzalloc(dev, sizeof(struct exynos_ppmu) * PPMU_END, GFP_KERNEL); if (!ppmu_data->ppmu) { dev_err(dev, "Failed to allocate memory for exynos_ppmu\n"); return -ENOMEM; } np = of_find_compatible_node(NULL, NULL, "samsung,exynos5250-ppmu"); if (np == NULL) { pr_err("Unable to find PPMU node\n"); return -ENOENT; } for (i = 0; i < ppmu_data->ppmu_end; i++) { /* map PPMU memory region */ ppmu_data->ppmu[i].hw_base = of_iomap(np, i); if (ppmu_data->ppmu[i].hw_base == NULL) { dev_err(&pdev->dev, "failed to map memory region\n"); return -ENOMEM; } } data->pm_notifier.notifier_call = exynos5_busfreq_int_pm_notifier_event; data->dev = dev; mutex_init(&data->lock); err = exynos5250_init_int_tables(data); if (err) return err; data->vdd_int = devm_regulator_get(dev, "vdd_int"); if (IS_ERR(data->vdd_int)) { dev_err(dev, "Cannot get the regulator \"vdd_int\"\n"); return PTR_ERR(data->vdd_int); } data->int_clk = devm_clk_get(dev, "int_clk"); if (IS_ERR(data->int_clk)) { dev_err(dev, "Cannot get clock \"int_clk\"\n"); return PTR_ERR(data->int_clk); } rcu_read_lock(); opp = dev_pm_opp_find_freq_floor(dev, &exynos5_devfreq_int_profile.initial_freq); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(dev, "Invalid initial frequency %lu kHz.\n", exynos5_devfreq_int_profile.initial_freq); return PTR_ERR(opp); } initial_freq = dev_pm_opp_get_freq(opp); initial_volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); data->curr_freq = initial_freq; err = clk_set_rate(data->int_clk, initial_freq * 1000); if (err) { dev_err(dev, "Failed to set initial frequency\n"); return err; } err = exynos5_int_setvolt(data, initial_volt); if (err) return err; platform_set_drvdata(pdev, data); busfreq_mon_reset(ppmu_data); data->devfreq = devm_devfreq_add_device(dev, &exynos5_devfreq_int_profile, "simple_ondemand", NULL); if (IS_ERR(data->devfreq)) return PTR_ERR(data->devfreq); err = devm_devfreq_register_opp_notifier(dev, data->devfreq); if (err < 0) { dev_err(dev, "Failed to register opp notifier\n"); return err; } err = register_pm_notifier(&data->pm_notifier); if (err) { dev_err(dev, "Failed to setup pm notifier\n"); return err; } /* TODO: Add a new QOS class for int/mif bus */ pm_qos_add_request(&data->int_req, PM_QOS_NETWORK_THROUGHPUT, -1); return 0; } static int exynos5_busfreq_int_remove(struct platform_device *pdev) { struct busfreq_data_int *data = platform_get_drvdata(pdev); pm_qos_remove_request(&data->int_req); unregister_pm_notifier(&data->pm_notifier); return 0; } #ifdef CONFIG_PM_SLEEP static int exynos5_busfreq_int_resume(struct device *dev) { struct platform_device *pdev = container_of(dev, struct platform_device, dev); struct busfreq_data_int *data = platform_get_drvdata(pdev); struct busfreq_ppmu_data *ppmu_data = &data->ppmu_data; busfreq_mon_reset(ppmu_data); return 0; } static const struct dev_pm_ops exynos5_busfreq_int_pm = { .resume = exynos5_busfreq_int_resume, }; #endif static SIMPLE_DEV_PM_OPS(exynos5_busfreq_int_pm_ops, NULL, exynos5_busfreq_int_resume); /* platform device pointer for exynos5 devfreq device. */ static struct platform_device *exynos5_devfreq_pdev; static struct platform_driver exynos5_busfreq_int_driver = { .probe = exynos5_busfreq_int_probe, .remove = exynos5_busfreq_int_remove, .driver = { .name = "exynos5-bus-int", .pm = &exynos5_busfreq_int_pm_ops, }, }; static int __init exynos5_busfreq_int_init(void) { int ret; ret = platform_driver_register(&exynos5_busfreq_int_driver); if (ret < 0) goto out; exynos5_devfreq_pdev = platform_device_register_simple("exynos5-bus-int", -1, NULL, 0); if (IS_ERR(exynos5_devfreq_pdev)) { ret = PTR_ERR(exynos5_devfreq_pdev); goto out1; } return 0; out1: platform_driver_unregister(&exynos5_busfreq_int_driver); out: return ret; } late_initcall(exynos5_busfreq_int_init); static void __exit exynos5_busfreq_int_exit(void) { platform_device_unregister(exynos5_devfreq_pdev); platform_driver_unregister(&exynos5_busfreq_int_driver); } module_exit(exynos5_busfreq_int_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("EXYNOS5 busfreq driver with devfreq framework");