// SPDX-License-Identifier: GPL-2.0 // Copyright 2014-2015 Freescale // Copyright 2018 NXP /* * Driver for NXP Layerscape Queue Direct Memory Access Controller * * Author: * Wen He * Jiaheng Fan * */ #include #include #include #include #include #include #include "virt-dma.h" #include "fsldma.h" /* Register related definition */ #define FSL_QDMA_DMR 0x0 #define FSL_QDMA_DSR 0x4 #define FSL_QDMA_DEIER 0xe00 #define FSL_QDMA_DEDR 0xe04 #define FSL_QDMA_DECFDW0R 0xe10 #define FSL_QDMA_DECFDW1R 0xe14 #define FSL_QDMA_DECFDW2R 0xe18 #define FSL_QDMA_DECFDW3R 0xe1c #define FSL_QDMA_DECFQIDR 0xe30 #define FSL_QDMA_DECBR 0xe34 #define FSL_QDMA_BCQMR(x) (0xc0 + 0x100 * (x)) #define FSL_QDMA_BCQSR(x) (0xc4 + 0x100 * (x)) #define FSL_QDMA_BCQEDPA_SADDR(x) (0xc8 + 0x100 * (x)) #define FSL_QDMA_BCQDPA_SADDR(x) (0xcc + 0x100 * (x)) #define FSL_QDMA_BCQEEPA_SADDR(x) (0xd0 + 0x100 * (x)) #define FSL_QDMA_BCQEPA_SADDR(x) (0xd4 + 0x100 * (x)) #define FSL_QDMA_BCQIER(x) (0xe0 + 0x100 * (x)) #define FSL_QDMA_BCQIDR(x) (0xe4 + 0x100 * (x)) #define FSL_QDMA_SQDPAR 0x80c #define FSL_QDMA_SQEPAR 0x814 #define FSL_QDMA_BSQMR 0x800 #define FSL_QDMA_BSQSR 0x804 #define FSL_QDMA_BSQICR 0x828 #define FSL_QDMA_CQMR 0xa00 #define FSL_QDMA_CQDSCR1 0xa08 #define FSL_QDMA_CQDSCR2 0xa0c #define FSL_QDMA_CQIER 0xa10 #define FSL_QDMA_CQEDR 0xa14 #define FSL_QDMA_SQCCMR 0xa20 /* Registers for bit and genmask */ #define FSL_QDMA_CQIDR_SQT BIT(15) #define QDMA_CCDF_FORMAT BIT(29) #define QDMA_CCDF_SER BIT(30) #define QDMA_SG_FIN BIT(30) #define QDMA_SG_LEN_MASK GENMASK(29, 0) #define QDMA_CCDF_MASK GENMASK(28, 20) #define FSL_QDMA_DEDR_CLEAR GENMASK(31, 0) #define FSL_QDMA_BCQIDR_CLEAR GENMASK(31, 0) #define FSL_QDMA_DEIER_CLEAR GENMASK(31, 0) #define FSL_QDMA_BCQIER_CQTIE BIT(15) #define FSL_QDMA_BCQIER_CQPEIE BIT(23) #define FSL_QDMA_BSQICR_ICEN BIT(31) #define FSL_QDMA_BSQICR_ICST(x) ((x) << 16) #define FSL_QDMA_CQIER_MEIE BIT(31) #define FSL_QDMA_CQIER_TEIE BIT(0) #define FSL_QDMA_SQCCMR_ENTER_WM BIT(21) #define FSL_QDMA_BCQMR_EN BIT(31) #define FSL_QDMA_BCQMR_EI BIT(30) #define FSL_QDMA_BCQMR_CD_THLD(x) ((x) << 20) #define FSL_QDMA_BCQMR_CQ_SIZE(x) ((x) << 16) #define FSL_QDMA_BCQSR_QF BIT(16) #define FSL_QDMA_BCQSR_XOFF BIT(0) #define FSL_QDMA_BSQMR_EN BIT(31) #define FSL_QDMA_BSQMR_DI BIT(30) #define FSL_QDMA_BSQMR_CQ_SIZE(x) ((x) << 16) #define FSL_QDMA_BSQSR_QE BIT(17) #define FSL_QDMA_DMR_DQD BIT(30) #define FSL_QDMA_DSR_DB BIT(31) /* Size related definition */ #define FSL_QDMA_QUEUE_MAX 8 #define FSL_QDMA_COMMAND_BUFFER_SIZE 64 #define FSL_QDMA_DESCRIPTOR_BUFFER_SIZE 32 #define FSL_QDMA_CIRCULAR_DESC_SIZE_MIN 64 #define FSL_QDMA_CIRCULAR_DESC_SIZE_MAX 16384 #define FSL_QDMA_QUEUE_NUM_MAX 8 /* Field definition for CMD */ #define FSL_QDMA_CMD_RWTTYPE 0x4 #define FSL_QDMA_CMD_LWC 0x2 #define FSL_QDMA_CMD_RWTTYPE_OFFSET 28 #define FSL_QDMA_CMD_NS_OFFSET 27 #define FSL_QDMA_CMD_DQOS_OFFSET 24 #define FSL_QDMA_CMD_WTHROTL_OFFSET 20 #define FSL_QDMA_CMD_DSEN_OFFSET 19 #define FSL_QDMA_CMD_LWC_OFFSET 16 /* Field definition for Descriptor status */ #define QDMA_CCDF_STATUS_RTE BIT(5) #define QDMA_CCDF_STATUS_WTE BIT(4) #define QDMA_CCDF_STATUS_CDE BIT(2) #define QDMA_CCDF_STATUS_SDE BIT(1) #define QDMA_CCDF_STATUS_DDE BIT(0) #define QDMA_CCDF_STATUS_MASK (QDMA_CCDF_STATUS_RTE | \ QDMA_CCDF_STATUS_WTE | \ QDMA_CCDF_STATUS_CDE | \ QDMA_CCDF_STATUS_SDE | \ QDMA_CCDF_STATUS_DDE) /* Field definition for Descriptor offset */ #define QDMA_CCDF_OFFSET 20 #define QDMA_SDDF_CMD(x) (((u64)(x)) << 32) /* Field definition for safe loop count*/ #define FSL_QDMA_HALT_COUNT 1500 #define FSL_QDMA_MAX_SIZE 16385 #define FSL_QDMA_COMP_TIMEOUT 1000 #define FSL_COMMAND_QUEUE_OVERFLLOW 10 #define FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma_engine, x) \ (((fsl_qdma_engine)->block_offset) * (x)) /** * struct fsl_qdma_format - This is the struct holding describing compound * descriptor format with qDMA. * @status: Command status and enqueue status notification. * @cfg: Frame offset and frame format. * @addr_lo: Holding the compound descriptor of the lower * 32-bits address in memory 40-bit address. * @addr_hi: Same as above member, but point high 8-bits in * memory 40-bit address. * @__reserved1: Reserved field. * @cfg8b_w1: Compound descriptor command queue origin produced * by qDMA and dynamic debug field. * @data: Pointer to the memory 40-bit address, describes DMA * source information and DMA destination information. */ struct fsl_qdma_format { __le32 status; __le32 cfg; union { struct { __le32 addr_lo; u8 addr_hi; u8 __reserved1[2]; u8 cfg8b_w1; } __packed; __le64 data; }; } __packed; /* qDMA status notification pre information */ struct fsl_pre_status { u64 addr; u8 queue; }; static DEFINE_PER_CPU(struct fsl_pre_status, pre); struct fsl_qdma_chan { struct virt_dma_chan vchan; struct virt_dma_desc vdesc; enum dma_status status; struct fsl_qdma_engine *qdma; struct fsl_qdma_queue *queue; }; struct fsl_qdma_queue { struct fsl_qdma_format *virt_head; struct fsl_qdma_format *virt_tail; struct list_head comp_used; struct list_head comp_free; struct dma_pool *comp_pool; struct dma_pool *desc_pool; spinlock_t queue_lock; dma_addr_t bus_addr; u32 n_cq; u32 id; struct fsl_qdma_format *cq; void __iomem *block_base; }; struct fsl_qdma_comp { dma_addr_t bus_addr; dma_addr_t desc_bus_addr; struct fsl_qdma_format *virt_addr; struct fsl_qdma_format *desc_virt_addr; struct fsl_qdma_chan *qchan; struct virt_dma_desc vdesc; struct list_head list; }; struct fsl_qdma_engine { struct dma_device dma_dev; void __iomem *ctrl_base; void __iomem *status_base; void __iomem *block_base; u32 n_chans; u32 n_queues; struct mutex fsl_qdma_mutex; int error_irq; int *queue_irq; u32 feature; struct fsl_qdma_queue *queue; struct fsl_qdma_queue **status; struct fsl_qdma_chan *chans; int block_number; int block_offset; int irq_base; int desc_allocated; }; static inline u64 qdma_ccdf_addr_get64(const struct fsl_qdma_format *ccdf) { return le64_to_cpu(ccdf->data) & (U64_MAX >> 24); } static inline void qdma_desc_addr_set64(struct fsl_qdma_format *ccdf, u64 addr) { ccdf->addr_hi = upper_32_bits(addr); ccdf->addr_lo = cpu_to_le32(lower_32_bits(addr)); } static inline u8 qdma_ccdf_get_queue(const struct fsl_qdma_format *ccdf) { return ccdf->cfg8b_w1 & U8_MAX; } static inline int qdma_ccdf_get_offset(const struct fsl_qdma_format *ccdf) { return (le32_to_cpu(ccdf->cfg) & QDMA_CCDF_MASK) >> QDMA_CCDF_OFFSET; } static inline void qdma_ccdf_set_format(struct fsl_qdma_format *ccdf, int offset) { ccdf->cfg = cpu_to_le32(QDMA_CCDF_FORMAT | (offset << QDMA_CCDF_OFFSET)); } static inline int qdma_ccdf_get_status(const struct fsl_qdma_format *ccdf) { return (le32_to_cpu(ccdf->status) & QDMA_CCDF_STATUS_MASK); } static inline void qdma_ccdf_set_ser(struct fsl_qdma_format *ccdf, int status) { ccdf->status = cpu_to_le32(QDMA_CCDF_SER | status); } static inline void qdma_csgf_set_len(struct fsl_qdma_format *csgf, int len) { csgf->cfg = cpu_to_le32(len & QDMA_SG_LEN_MASK); } static inline void qdma_csgf_set_f(struct fsl_qdma_format *csgf, int len) { csgf->cfg = cpu_to_le32(QDMA_SG_FIN | (len & QDMA_SG_LEN_MASK)); } static u32 qdma_readl(struct fsl_qdma_engine *qdma, void __iomem *addr) { return FSL_DMA_IN(qdma, addr, 32); } static void qdma_writel(struct fsl_qdma_engine *qdma, u32 val, void __iomem *addr) { FSL_DMA_OUT(qdma, addr, val, 32); } static struct fsl_qdma_chan *to_fsl_qdma_chan(struct dma_chan *chan) { return container_of(chan, struct fsl_qdma_chan, vchan.chan); } static struct fsl_qdma_comp *to_fsl_qdma_comp(struct virt_dma_desc *vd) { return container_of(vd, struct fsl_qdma_comp, vdesc); } static void fsl_qdma_free_chan_resources(struct dma_chan *chan) { struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan); struct fsl_qdma_queue *fsl_queue = fsl_chan->queue; struct fsl_qdma_engine *fsl_qdma = fsl_chan->qdma; struct fsl_qdma_comp *comp_temp, *_comp_temp; unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&fsl_chan->vchan.lock, flags); vchan_get_all_descriptors(&fsl_chan->vchan, &head); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); vchan_dma_desc_free_list(&fsl_chan->vchan, &head); if (!fsl_queue->comp_pool && !fsl_queue->desc_pool) return; list_for_each_entry_safe(comp_temp, _comp_temp, &fsl_queue->comp_used, list) { dma_pool_free(fsl_queue->comp_pool, comp_temp->virt_addr, comp_temp->bus_addr); dma_pool_free(fsl_queue->desc_pool, comp_temp->desc_virt_addr, comp_temp->desc_bus_addr); list_del(&comp_temp->list); kfree(comp_temp); } list_for_each_entry_safe(comp_temp, _comp_temp, &fsl_queue->comp_free, list) { dma_pool_free(fsl_queue->comp_pool, comp_temp->virt_addr, comp_temp->bus_addr); dma_pool_free(fsl_queue->desc_pool, comp_temp->desc_virt_addr, comp_temp->desc_bus_addr); list_del(&comp_temp->list); kfree(comp_temp); } dma_pool_destroy(fsl_queue->comp_pool); dma_pool_destroy(fsl_queue->desc_pool); fsl_qdma->desc_allocated--; fsl_queue->comp_pool = NULL; fsl_queue->desc_pool = NULL; } static void fsl_qdma_comp_fill_memcpy(struct fsl_qdma_comp *fsl_comp, dma_addr_t dst, dma_addr_t src, u32 len) { u32 cmd; struct fsl_qdma_format *sdf, *ddf; struct fsl_qdma_format *ccdf, *csgf_desc, *csgf_src, *csgf_dest; ccdf = fsl_comp->virt_addr; csgf_desc = fsl_comp->virt_addr + 1; csgf_src = fsl_comp->virt_addr + 2; csgf_dest = fsl_comp->virt_addr + 3; sdf = fsl_comp->desc_virt_addr; ddf = fsl_comp->desc_virt_addr + 1; memset(fsl_comp->virt_addr, 0, FSL_QDMA_COMMAND_BUFFER_SIZE); memset(fsl_comp->desc_virt_addr, 0, FSL_QDMA_DESCRIPTOR_BUFFER_SIZE); /* Head Command Descriptor(Frame Descriptor) */ qdma_desc_addr_set64(ccdf, fsl_comp->bus_addr + 16); qdma_ccdf_set_format(ccdf, qdma_ccdf_get_offset(ccdf)); qdma_ccdf_set_ser(ccdf, qdma_ccdf_get_status(ccdf)); /* Status notification is enqueued to status queue. */ /* Compound Command Descriptor(Frame List Table) */ qdma_desc_addr_set64(csgf_desc, fsl_comp->desc_bus_addr); /* It must be 32 as Compound S/G Descriptor */ qdma_csgf_set_len(csgf_desc, 32); qdma_desc_addr_set64(csgf_src, src); qdma_csgf_set_len(csgf_src, len); qdma_desc_addr_set64(csgf_dest, dst); qdma_csgf_set_len(csgf_dest, len); /* This entry is the last entry. */ qdma_csgf_set_f(csgf_dest, len); /* Descriptor Buffer */ cmd = cpu_to_le32(FSL_QDMA_CMD_RWTTYPE << FSL_QDMA_CMD_RWTTYPE_OFFSET); sdf->data = QDMA_SDDF_CMD(cmd); cmd = cpu_to_le32(FSL_QDMA_CMD_RWTTYPE << FSL_QDMA_CMD_RWTTYPE_OFFSET); cmd |= cpu_to_le32(FSL_QDMA_CMD_LWC << FSL_QDMA_CMD_LWC_OFFSET); ddf->data = QDMA_SDDF_CMD(cmd); } /* * Pre-request full command descriptor for enqueue. */ static int fsl_qdma_pre_request_enqueue_desc(struct fsl_qdma_queue *queue) { int i; struct fsl_qdma_comp *comp_temp, *_comp_temp; for (i = 0; i < queue->n_cq + FSL_COMMAND_QUEUE_OVERFLLOW; i++) { comp_temp = kzalloc(sizeof(*comp_temp), GFP_KERNEL); if (!comp_temp) goto err_alloc; comp_temp->virt_addr = dma_pool_alloc(queue->comp_pool, GFP_KERNEL, &comp_temp->bus_addr); if (!comp_temp->virt_addr) goto err_dma_alloc; comp_temp->desc_virt_addr = dma_pool_alloc(queue->desc_pool, GFP_KERNEL, &comp_temp->desc_bus_addr); if (!comp_temp->desc_virt_addr) goto err_desc_dma_alloc; list_add_tail(&comp_temp->list, &queue->comp_free); } return 0; err_desc_dma_alloc: dma_pool_free(queue->comp_pool, comp_temp->virt_addr, comp_temp->bus_addr); err_dma_alloc: kfree(comp_temp); err_alloc: list_for_each_entry_safe(comp_temp, _comp_temp, &queue->comp_free, list) { if (comp_temp->virt_addr) dma_pool_free(queue->comp_pool, comp_temp->virt_addr, comp_temp->bus_addr); if (comp_temp->desc_virt_addr) dma_pool_free(queue->desc_pool, comp_temp->desc_virt_addr, comp_temp->desc_bus_addr); list_del(&comp_temp->list); kfree(comp_temp); } return -ENOMEM; } /* * Request a command descriptor for enqueue. */ static struct fsl_qdma_comp *fsl_qdma_request_enqueue_desc(struct fsl_qdma_chan *fsl_chan) { unsigned long flags; struct fsl_qdma_comp *comp_temp; int timeout = FSL_QDMA_COMP_TIMEOUT; struct fsl_qdma_queue *queue = fsl_chan->queue; while (timeout--) { spin_lock_irqsave(&queue->queue_lock, flags); if (!list_empty(&queue->comp_free)) { comp_temp = list_first_entry(&queue->comp_free, struct fsl_qdma_comp, list); list_del(&comp_temp->list); spin_unlock_irqrestore(&queue->queue_lock, flags); comp_temp->qchan = fsl_chan; return comp_temp; } spin_unlock_irqrestore(&queue->queue_lock, flags); udelay(1); } return NULL; } static struct fsl_qdma_queue *fsl_qdma_alloc_queue_resources(struct platform_device *pdev, struct fsl_qdma_engine *fsl_qdma) { int ret, len, i, j; int queue_num, block_number; unsigned int queue_size[FSL_QDMA_QUEUE_MAX]; struct fsl_qdma_queue *queue_head, *queue_temp; queue_num = fsl_qdma->n_queues; block_number = fsl_qdma->block_number; if (queue_num > FSL_QDMA_QUEUE_MAX) queue_num = FSL_QDMA_QUEUE_MAX; len = sizeof(*queue_head) * queue_num * block_number; queue_head = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); if (!queue_head) return NULL; ret = device_property_read_u32_array(&pdev->dev, "queue-sizes", queue_size, queue_num); if (ret) { dev_err(&pdev->dev, "Can't get queue-sizes.\n"); return NULL; } for (j = 0; j < block_number; j++) { for (i = 0; i < queue_num; i++) { if (queue_size[i] > FSL_QDMA_CIRCULAR_DESC_SIZE_MAX || queue_size[i] < FSL_QDMA_CIRCULAR_DESC_SIZE_MIN) { dev_err(&pdev->dev, "Get wrong queue-sizes.\n"); return NULL; } queue_temp = queue_head + i + (j * queue_num); queue_temp->cq = dma_alloc_coherent(&pdev->dev, sizeof(struct fsl_qdma_format) * queue_size[i], &queue_temp->bus_addr, GFP_KERNEL); if (!queue_temp->cq) return NULL; queue_temp->block_base = fsl_qdma->block_base + FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j); queue_temp->n_cq = queue_size[i]; queue_temp->id = i; queue_temp->virt_head = queue_temp->cq; queue_temp->virt_tail = queue_temp->cq; /* * List for queue command buffer */ INIT_LIST_HEAD(&queue_temp->comp_used); spin_lock_init(&queue_temp->queue_lock); } } return queue_head; } static struct fsl_qdma_queue *fsl_qdma_prep_status_queue(struct platform_device *pdev) { int ret; unsigned int status_size; struct fsl_qdma_queue *status_head; struct device_node *np = pdev->dev.of_node; ret = of_property_read_u32(np, "status-sizes", &status_size); if (ret) { dev_err(&pdev->dev, "Can't get status-sizes.\n"); return NULL; } if (status_size > FSL_QDMA_CIRCULAR_DESC_SIZE_MAX || status_size < FSL_QDMA_CIRCULAR_DESC_SIZE_MIN) { dev_err(&pdev->dev, "Get wrong status_size.\n"); return NULL; } status_head = devm_kzalloc(&pdev->dev, sizeof(*status_head), GFP_KERNEL); if (!status_head) return NULL; /* * Buffer for queue command */ status_head->cq = dma_alloc_coherent(&pdev->dev, sizeof(struct fsl_qdma_format) * status_size, &status_head->bus_addr, GFP_KERNEL); if (!status_head->cq) { devm_kfree(&pdev->dev, status_head); return NULL; } status_head->n_cq = status_size; status_head->virt_head = status_head->cq; status_head->virt_tail = status_head->cq; status_head->comp_pool = NULL; return status_head; } static int fsl_qdma_halt(struct fsl_qdma_engine *fsl_qdma) { u32 reg; int i, j, count = FSL_QDMA_HALT_COUNT; void __iomem *block, *ctrl = fsl_qdma->ctrl_base; /* Disable the command queue and wait for idle state. */ reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR); reg |= FSL_QDMA_DMR_DQD; qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR); for (j = 0; j < fsl_qdma->block_number; j++) { block = fsl_qdma->block_base + FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j); for (i = 0; i < FSL_QDMA_QUEUE_NUM_MAX; i++) qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BCQMR(i)); } while (1) { reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DSR); if (!(reg & FSL_QDMA_DSR_DB)) break; if (count-- < 0) return -EBUSY; udelay(100); } for (j = 0; j < fsl_qdma->block_number; j++) { block = fsl_qdma->block_base + FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j); /* Disable status queue. */ qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BSQMR); /* * clear the command queue interrupt detect register for * all queues. */ qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR, block + FSL_QDMA_BCQIDR(0)); } return 0; } static int fsl_qdma_queue_transfer_complete(struct fsl_qdma_engine *fsl_qdma, void *block, int id) { bool duplicate; u32 reg, i, count; u8 completion_status; struct fsl_qdma_queue *temp_queue; struct fsl_qdma_format *status_addr; struct fsl_qdma_comp *fsl_comp = NULL; struct fsl_qdma_queue *fsl_queue = fsl_qdma->queue; struct fsl_qdma_queue *fsl_status = fsl_qdma->status[id]; count = FSL_QDMA_MAX_SIZE; while (count--) { duplicate = 0; reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQSR); if (reg & FSL_QDMA_BSQSR_QE) return 0; status_addr = fsl_status->virt_head; if (qdma_ccdf_get_queue(status_addr) == __this_cpu_read(pre.queue) && qdma_ccdf_addr_get64(status_addr) == __this_cpu_read(pre.addr)) duplicate = 1; i = qdma_ccdf_get_queue(status_addr) + id * fsl_qdma->n_queues; __this_cpu_write(pre.addr, qdma_ccdf_addr_get64(status_addr)); __this_cpu_write(pre.queue, qdma_ccdf_get_queue(status_addr)); temp_queue = fsl_queue + i; spin_lock(&temp_queue->queue_lock); if (list_empty(&temp_queue->comp_used)) { if (!duplicate) { spin_unlock(&temp_queue->queue_lock); return -EAGAIN; } } else { fsl_comp = list_first_entry(&temp_queue->comp_used, struct fsl_qdma_comp, list); if (fsl_comp->bus_addr + 16 != __this_cpu_read(pre.addr)) { if (!duplicate) { spin_unlock(&temp_queue->queue_lock); return -EAGAIN; } } } if (duplicate) { reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR); reg |= FSL_QDMA_BSQMR_DI; qdma_desc_addr_set64(status_addr, 0x0); fsl_status->virt_head++; if (fsl_status->virt_head == fsl_status->cq + fsl_status->n_cq) fsl_status->virt_head = fsl_status->cq; qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR); spin_unlock(&temp_queue->queue_lock); continue; } list_del(&fsl_comp->list); completion_status = qdma_ccdf_get_status(status_addr); reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR); reg |= FSL_QDMA_BSQMR_DI; qdma_desc_addr_set64(status_addr, 0x0); fsl_status->virt_head++; if (fsl_status->virt_head == fsl_status->cq + fsl_status->n_cq) fsl_status->virt_head = fsl_status->cq; qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR); spin_unlock(&temp_queue->queue_lock); /* The completion_status is evaluated here * (outside of spin lock) */ if (completion_status) { /* A completion error occurred! */ if (completion_status & QDMA_CCDF_STATUS_WTE) { /* Write transaction error */ fsl_comp->vdesc.tx_result.result = DMA_TRANS_WRITE_FAILED; } else if (completion_status & QDMA_CCDF_STATUS_RTE) { /* Read transaction error */ fsl_comp->vdesc.tx_result.result = DMA_TRANS_READ_FAILED; } else { /* Command/source/destination * description error */ fsl_comp->vdesc.tx_result.result = DMA_TRANS_ABORTED; dev_err(fsl_qdma->dma_dev.dev, "DMA status descriptor error %x\n", completion_status); } } spin_lock(&fsl_comp->qchan->vchan.lock); vchan_cookie_complete(&fsl_comp->vdesc); fsl_comp->qchan->status = DMA_COMPLETE; spin_unlock(&fsl_comp->qchan->vchan.lock); } return 0; } static irqreturn_t fsl_qdma_error_handler(int irq, void *dev_id) { unsigned int intr; struct fsl_qdma_engine *fsl_qdma = dev_id; void __iomem *status = fsl_qdma->status_base; unsigned int decfdw0r; unsigned int decfdw1r; unsigned int decfdw2r; unsigned int decfdw3r; intr = qdma_readl(fsl_qdma, status + FSL_QDMA_DEDR); if (intr) { decfdw0r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW0R); decfdw1r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW1R); decfdw2r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW2R); decfdw3r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW3R); dev_err(fsl_qdma->dma_dev.dev, "DMA transaction error! (%x: %x-%x-%x-%x)\n", intr, decfdw0r, decfdw1r, decfdw2r, decfdw3r); } qdma_writel(fsl_qdma, FSL_QDMA_DEDR_CLEAR, status + FSL_QDMA_DEDR); return IRQ_HANDLED; } static irqreturn_t fsl_qdma_queue_handler(int irq, void *dev_id) { int id; unsigned int intr, reg; struct fsl_qdma_engine *fsl_qdma = dev_id; void __iomem *block, *ctrl = fsl_qdma->ctrl_base; id = irq - fsl_qdma->irq_base; if (id < 0 && id > fsl_qdma->block_number) { dev_err(fsl_qdma->dma_dev.dev, "irq %d is wrong irq_base is %d\n", irq, fsl_qdma->irq_base); } block = fsl_qdma->block_base + FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, id); intr = qdma_readl(fsl_qdma, block + FSL_QDMA_BCQIDR(0)); if ((intr & FSL_QDMA_CQIDR_SQT) != 0) intr = fsl_qdma_queue_transfer_complete(fsl_qdma, block, id); if (intr != 0) { reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR); reg |= FSL_QDMA_DMR_DQD; qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR); qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BCQIER(0)); dev_err(fsl_qdma->dma_dev.dev, "QDMA: status err!\n"); } /* Clear all detected events and interrupts. */ qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR, block + FSL_QDMA_BCQIDR(0)); return IRQ_HANDLED; } static int fsl_qdma_irq_init(struct platform_device *pdev, struct fsl_qdma_engine *fsl_qdma) { int i; int cpu; int ret; char irq_name[20]; fsl_qdma->error_irq = platform_get_irq_byname(pdev, "qdma-error"); if (fsl_qdma->error_irq < 0) return fsl_qdma->error_irq; ret = devm_request_irq(&pdev->dev, fsl_qdma->error_irq, fsl_qdma_error_handler, 0, "qDMA error", fsl_qdma); if (ret) { dev_err(&pdev->dev, "Can't register qDMA controller IRQ.\n"); return ret; } for (i = 0; i < fsl_qdma->block_number; i++) { sprintf(irq_name, "qdma-queue%d", i); fsl_qdma->queue_irq[i] = platform_get_irq_byname(pdev, irq_name); if (fsl_qdma->queue_irq[i] < 0) return fsl_qdma->queue_irq[i]; ret = devm_request_irq(&pdev->dev, fsl_qdma->queue_irq[i], fsl_qdma_queue_handler, 0, "qDMA queue", fsl_qdma); if (ret) { dev_err(&pdev->dev, "Can't register qDMA queue IRQ.\n"); return ret; } cpu = i % num_online_cpus(); ret = irq_set_affinity_hint(fsl_qdma->queue_irq[i], get_cpu_mask(cpu)); if (ret) { dev_err(&pdev->dev, "Can't set cpu %d affinity to IRQ %d.\n", cpu, fsl_qdma->queue_irq[i]); return ret; } } return 0; } static void fsl_qdma_irq_exit(struct platform_device *pdev, struct fsl_qdma_engine *fsl_qdma) { int i; devm_free_irq(&pdev->dev, fsl_qdma->error_irq, fsl_qdma); for (i = 0; i < fsl_qdma->block_number; i++) devm_free_irq(&pdev->dev, fsl_qdma->queue_irq[i], fsl_qdma); } static int fsl_qdma_reg_init(struct fsl_qdma_engine *fsl_qdma) { u32 reg; int i, j, ret; struct fsl_qdma_queue *temp; void __iomem *status = fsl_qdma->status_base; void __iomem *block, *ctrl = fsl_qdma->ctrl_base; struct fsl_qdma_queue *fsl_queue = fsl_qdma->queue; /* Try to halt the qDMA engine first. */ ret = fsl_qdma_halt(fsl_qdma); if (ret) { dev_err(fsl_qdma->dma_dev.dev, "DMA halt failed!"); return ret; } for (i = 0; i < fsl_qdma->block_number; i++) { /* * Clear the command queue interrupt detect register for * all queues. */ block = fsl_qdma->block_base + FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, i); qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR, block + FSL_QDMA_BCQIDR(0)); } for (j = 0; j < fsl_qdma->block_number; j++) { block = fsl_qdma->block_base + FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j); for (i = 0; i < fsl_qdma->n_queues; i++) { temp = fsl_queue + i + (j * fsl_qdma->n_queues); /* * Initialize Command Queue registers to * point to the first * command descriptor in memory. * Dequeue Pointer Address Registers * Enqueue Pointer Address Registers */ qdma_writel(fsl_qdma, temp->bus_addr, block + FSL_QDMA_BCQDPA_SADDR(i)); qdma_writel(fsl_qdma, temp->bus_addr, block + FSL_QDMA_BCQEPA_SADDR(i)); /* Initialize the queue mode. */ reg = FSL_QDMA_BCQMR_EN; reg |= FSL_QDMA_BCQMR_CD_THLD(ilog2(temp->n_cq) - 4); reg |= FSL_QDMA_BCQMR_CQ_SIZE(ilog2(temp->n_cq) - 6); qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BCQMR(i)); } /* * Workaround for erratum: ERR010812. * We must enable XOFF to avoid the enqueue rejection occurs. * Setting SQCCMR ENTER_WM to 0x20. */ qdma_writel(fsl_qdma, FSL_QDMA_SQCCMR_ENTER_WM, block + FSL_QDMA_SQCCMR); /* * Initialize status queue registers to point to the first * command descriptor in memory. * Dequeue Pointer Address Registers * Enqueue Pointer Address Registers */ qdma_writel(fsl_qdma, fsl_qdma->status[j]->bus_addr, block + FSL_QDMA_SQEPAR); qdma_writel(fsl_qdma, fsl_qdma->status[j]->bus_addr, block + FSL_QDMA_SQDPAR); /* Initialize status queue interrupt. */ qdma_writel(fsl_qdma, FSL_QDMA_BCQIER_CQTIE, block + FSL_QDMA_BCQIER(0)); qdma_writel(fsl_qdma, FSL_QDMA_BSQICR_ICEN | FSL_QDMA_BSQICR_ICST(5) | 0x8000, block + FSL_QDMA_BSQICR); qdma_writel(fsl_qdma, FSL_QDMA_CQIER_MEIE | FSL_QDMA_CQIER_TEIE, block + FSL_QDMA_CQIER); /* Initialize the status queue mode. */ reg = FSL_QDMA_BSQMR_EN; reg |= FSL_QDMA_BSQMR_CQ_SIZE(ilog2 (fsl_qdma->status[j]->n_cq) - 6); qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR); reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR); } /* Initialize controller interrupt register. */ qdma_writel(fsl_qdma, FSL_QDMA_DEDR_CLEAR, status + FSL_QDMA_DEDR); qdma_writel(fsl_qdma, FSL_QDMA_DEIER_CLEAR, status + FSL_QDMA_DEIER); reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR); reg &= ~FSL_QDMA_DMR_DQD; qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR); return 0; } static struct dma_async_tx_descriptor * fsl_qdma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags) { struct fsl_qdma_comp *fsl_comp; struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan); fsl_comp = fsl_qdma_request_enqueue_desc(fsl_chan); if (!fsl_comp) return NULL; fsl_qdma_comp_fill_memcpy(fsl_comp, dst, src, len); return vchan_tx_prep(&fsl_chan->vchan, &fsl_comp->vdesc, flags); } static void fsl_qdma_enqueue_desc(struct fsl_qdma_chan *fsl_chan) { u32 reg; struct virt_dma_desc *vdesc; struct fsl_qdma_comp *fsl_comp; struct fsl_qdma_queue *fsl_queue = fsl_chan->queue; void __iomem *block = fsl_queue->block_base; reg = qdma_readl(fsl_chan->qdma, block + FSL_QDMA_BCQSR(fsl_queue->id)); if (reg & (FSL_QDMA_BCQSR_QF | FSL_QDMA_BCQSR_XOFF)) return; vdesc = vchan_next_desc(&fsl_chan->vchan); if (!vdesc) return; list_del(&vdesc->node); fsl_comp = to_fsl_qdma_comp(vdesc); memcpy(fsl_queue->virt_head++, fsl_comp->virt_addr, sizeof(struct fsl_qdma_format)); if (fsl_queue->virt_head == fsl_queue->cq + fsl_queue->n_cq) fsl_queue->virt_head = fsl_queue->cq; list_add_tail(&fsl_comp->list, &fsl_queue->comp_used); barrier(); reg = qdma_readl(fsl_chan->qdma, block + FSL_QDMA_BCQMR(fsl_queue->id)); reg |= FSL_QDMA_BCQMR_EI; qdma_writel(fsl_chan->qdma, reg, block + FSL_QDMA_BCQMR(fsl_queue->id)); fsl_chan->status = DMA_IN_PROGRESS; } static void fsl_qdma_free_desc(struct virt_dma_desc *vdesc) { unsigned long flags; struct fsl_qdma_comp *fsl_comp; struct fsl_qdma_queue *fsl_queue; fsl_comp = to_fsl_qdma_comp(vdesc); fsl_queue = fsl_comp->qchan->queue; spin_lock_irqsave(&fsl_queue->queue_lock, flags); list_add_tail(&fsl_comp->list, &fsl_queue->comp_free); spin_unlock_irqrestore(&fsl_queue->queue_lock, flags); } static void fsl_qdma_issue_pending(struct dma_chan *chan) { unsigned long flags; struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan); struct fsl_qdma_queue *fsl_queue = fsl_chan->queue; spin_lock_irqsave(&fsl_queue->queue_lock, flags); spin_lock(&fsl_chan->vchan.lock); if (vchan_issue_pending(&fsl_chan->vchan)) fsl_qdma_enqueue_desc(fsl_chan); spin_unlock(&fsl_chan->vchan.lock); spin_unlock_irqrestore(&fsl_queue->queue_lock, flags); } static void fsl_qdma_synchronize(struct dma_chan *chan) { struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan); vchan_synchronize(&fsl_chan->vchan); } static int fsl_qdma_terminate_all(struct dma_chan *chan) { LIST_HEAD(head); unsigned long flags; struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan); spin_lock_irqsave(&fsl_chan->vchan.lock, flags); vchan_get_all_descriptors(&fsl_chan->vchan, &head); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); vchan_dma_desc_free_list(&fsl_chan->vchan, &head); return 0; } static int fsl_qdma_alloc_chan_resources(struct dma_chan *chan) { int ret; struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan); struct fsl_qdma_engine *fsl_qdma = fsl_chan->qdma; struct fsl_qdma_queue *fsl_queue = fsl_chan->queue; if (fsl_queue->comp_pool && fsl_queue->desc_pool) return fsl_qdma->desc_allocated; INIT_LIST_HEAD(&fsl_queue->comp_free); /* * The dma pool for queue command buffer */ fsl_queue->comp_pool = dma_pool_create("comp_pool", chan->device->dev, FSL_QDMA_COMMAND_BUFFER_SIZE, 64, 0); if (!fsl_queue->comp_pool) return -ENOMEM; /* * The dma pool for Descriptor(SD/DD) buffer */ fsl_queue->desc_pool = dma_pool_create("desc_pool", chan->device->dev, FSL_QDMA_DESCRIPTOR_BUFFER_SIZE, 32, 0); if (!fsl_queue->desc_pool) goto err_desc_pool; ret = fsl_qdma_pre_request_enqueue_desc(fsl_queue); if (ret) { dev_err(chan->device->dev, "failed to alloc dma buffer for S/G descriptor\n"); goto err_mem; } fsl_qdma->desc_allocated++; return fsl_qdma->desc_allocated; err_mem: dma_pool_destroy(fsl_queue->desc_pool); err_desc_pool: dma_pool_destroy(fsl_queue->comp_pool); return -ENOMEM; } static int fsl_qdma_probe(struct platform_device *pdev) { int ret, i; int blk_num, blk_off; u32 len, chans, queues; struct resource *res; struct fsl_qdma_chan *fsl_chan; struct fsl_qdma_engine *fsl_qdma; struct device_node *np = pdev->dev.of_node; ret = of_property_read_u32(np, "dma-channels", &chans); if (ret) { dev_err(&pdev->dev, "Can't get dma-channels.\n"); return ret; } ret = of_property_read_u32(np, "block-offset", &blk_off); if (ret) { dev_err(&pdev->dev, "Can't get block-offset.\n"); return ret; } ret = of_property_read_u32(np, "block-number", &blk_num); if (ret) { dev_err(&pdev->dev, "Can't get block-number.\n"); return ret; } blk_num = min_t(int, blk_num, num_online_cpus()); len = sizeof(*fsl_qdma); fsl_qdma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); if (!fsl_qdma) return -ENOMEM; len = sizeof(*fsl_chan) * chans; fsl_qdma->chans = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); if (!fsl_qdma->chans) return -ENOMEM; len = sizeof(struct fsl_qdma_queue *) * blk_num; fsl_qdma->status = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); if (!fsl_qdma->status) return -ENOMEM; len = sizeof(int) * blk_num; fsl_qdma->queue_irq = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); if (!fsl_qdma->queue_irq) return -ENOMEM; ret = of_property_read_u32(np, "fsl,dma-queues", &queues); if (ret) { dev_err(&pdev->dev, "Can't get queues.\n"); return ret; } fsl_qdma->desc_allocated = 0; fsl_qdma->n_chans = chans; fsl_qdma->n_queues = queues; fsl_qdma->block_number = blk_num; fsl_qdma->block_offset = blk_off; mutex_init(&fsl_qdma->fsl_qdma_mutex); for (i = 0; i < fsl_qdma->block_number; i++) { fsl_qdma->status[i] = fsl_qdma_prep_status_queue(pdev); if (!fsl_qdma->status[i]) return -ENOMEM; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); fsl_qdma->ctrl_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(fsl_qdma->ctrl_base)) return PTR_ERR(fsl_qdma->ctrl_base); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); fsl_qdma->status_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(fsl_qdma->status_base)) return PTR_ERR(fsl_qdma->status_base); res = platform_get_resource(pdev, IORESOURCE_MEM, 2); fsl_qdma->block_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(fsl_qdma->block_base)) return PTR_ERR(fsl_qdma->block_base); fsl_qdma->queue = fsl_qdma_alloc_queue_resources(pdev, fsl_qdma); if (!fsl_qdma->queue) return -ENOMEM; ret = fsl_qdma_irq_init(pdev, fsl_qdma); if (ret) return ret; fsl_qdma->irq_base = platform_get_irq_byname(pdev, "qdma-queue0"); if (fsl_qdma->irq_base < 0) return fsl_qdma->irq_base; fsl_qdma->feature = of_property_read_bool(np, "big-endian"); INIT_LIST_HEAD(&fsl_qdma->dma_dev.channels); for (i = 0; i < fsl_qdma->n_chans; i++) { struct fsl_qdma_chan *fsl_chan = &fsl_qdma->chans[i]; fsl_chan->qdma = fsl_qdma; fsl_chan->queue = fsl_qdma->queue + i % (fsl_qdma->n_queues * fsl_qdma->block_number); fsl_chan->vchan.desc_free = fsl_qdma_free_desc; vchan_init(&fsl_chan->vchan, &fsl_qdma->dma_dev); } dma_cap_set(DMA_MEMCPY, fsl_qdma->dma_dev.cap_mask); fsl_qdma->dma_dev.dev = &pdev->dev; fsl_qdma->dma_dev.device_free_chan_resources = fsl_qdma_free_chan_resources; fsl_qdma->dma_dev.device_alloc_chan_resources = fsl_qdma_alloc_chan_resources; fsl_qdma->dma_dev.device_tx_status = dma_cookie_status; fsl_qdma->dma_dev.device_prep_dma_memcpy = fsl_qdma_prep_memcpy; fsl_qdma->dma_dev.device_issue_pending = fsl_qdma_issue_pending; fsl_qdma->dma_dev.device_synchronize = fsl_qdma_synchronize; fsl_qdma->dma_dev.device_terminate_all = fsl_qdma_terminate_all; dma_set_mask(&pdev->dev, DMA_BIT_MASK(40)); platform_set_drvdata(pdev, fsl_qdma); ret = dma_async_device_register(&fsl_qdma->dma_dev); if (ret) { dev_err(&pdev->dev, "Can't register NXP Layerscape qDMA engine.\n"); return ret; } ret = fsl_qdma_reg_init(fsl_qdma); if (ret) { dev_err(&pdev->dev, "Can't Initialize the qDMA engine.\n"); return ret; } return 0; } static void fsl_qdma_cleanup_vchan(struct dma_device *dmadev) { struct fsl_qdma_chan *chan, *_chan; list_for_each_entry_safe(chan, _chan, &dmadev->channels, vchan.chan.device_node) { list_del(&chan->vchan.chan.device_node); tasklet_kill(&chan->vchan.task); } } static int fsl_qdma_remove(struct platform_device *pdev) { int i; struct fsl_qdma_queue *status; struct device_node *np = pdev->dev.of_node; struct fsl_qdma_engine *fsl_qdma = platform_get_drvdata(pdev); fsl_qdma_irq_exit(pdev, fsl_qdma); fsl_qdma_cleanup_vchan(&fsl_qdma->dma_dev); of_dma_controller_free(np); dma_async_device_unregister(&fsl_qdma->dma_dev); for (i = 0; i < fsl_qdma->block_number; i++) { status = fsl_qdma->status[i]; dma_free_coherent(&pdev->dev, sizeof(struct fsl_qdma_format) * status->n_cq, status->cq, status->bus_addr); } return 0; } static const struct of_device_id fsl_qdma_dt_ids[] = { { .compatible = "fsl,ls1021a-qdma", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_qdma_dt_ids); static struct platform_driver fsl_qdma_driver = { .driver = { .name = "fsl-qdma", .of_match_table = fsl_qdma_dt_ids, }, .probe = fsl_qdma_probe, .remove = fsl_qdma_remove, }; module_platform_driver(fsl_qdma_driver); MODULE_ALIAS("platform:fsl-qdma"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("NXP Layerscape qDMA engine driver");