// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. */ #include #include #include #include #include #include #include "edac_module.h" /* Registers Offset */ #define AL_MC_ECC_CFG 0x70 #define AL_MC_ECC_CLEAR 0x7c #define AL_MC_ECC_ERR_COUNT 0x80 #define AL_MC_ECC_CE_ADDR0 0x84 #define AL_MC_ECC_CE_ADDR1 0x88 #define AL_MC_ECC_UE_ADDR0 0xa4 #define AL_MC_ECC_UE_ADDR1 0xa8 #define AL_MC_ECC_CE_SYND0 0x8c #define AL_MC_ECC_CE_SYND1 0x90 #define AL_MC_ECC_CE_SYND2 0x94 #define AL_MC_ECC_UE_SYND0 0xac #define AL_MC_ECC_UE_SYND1 0xb0 #define AL_MC_ECC_UE_SYND2 0xb4 /* Registers Fields */ #define AL_MC_ECC_CFG_SCRUB_DISABLED BIT(4) #define AL_MC_ECC_CLEAR_UE_COUNT BIT(3) #define AL_MC_ECC_CLEAR_CE_COUNT BIT(2) #define AL_MC_ECC_CLEAR_UE_ERR BIT(1) #define AL_MC_ECC_CLEAR_CE_ERR BIT(0) #define AL_MC_ECC_ERR_COUNT_UE GENMASK(31, 16) #define AL_MC_ECC_ERR_COUNT_CE GENMASK(15, 0) #define AL_MC_ECC_CE_ADDR0_RANK GENMASK(25, 24) #define AL_MC_ECC_CE_ADDR0_ROW GENMASK(17, 0) #define AL_MC_ECC_CE_ADDR1_BG GENMASK(25, 24) #define AL_MC_ECC_CE_ADDR1_BANK GENMASK(18, 16) #define AL_MC_ECC_CE_ADDR1_COLUMN GENMASK(11, 0) #define AL_MC_ECC_UE_ADDR0_RANK GENMASK(25, 24) #define AL_MC_ECC_UE_ADDR0_ROW GENMASK(17, 0) #define AL_MC_ECC_UE_ADDR1_BG GENMASK(25, 24) #define AL_MC_ECC_UE_ADDR1_BANK GENMASK(18, 16) #define AL_MC_ECC_UE_ADDR1_COLUMN GENMASK(11, 0) #define DRV_NAME "al_mc_edac" #define AL_MC_EDAC_MSG_MAX 256 struct al_mc_edac { void __iomem *mmio_base; spinlock_t lock; int irq_ce; int irq_ue; }; static void prepare_msg(char *message, size_t buffer_size, enum hw_event_mc_err_type type, u8 rank, u32 row, u8 bg, u8 bank, u16 column, u32 syn0, u32 syn1, u32 syn2) { snprintf(message, buffer_size, "%s rank=0x%x row=0x%x bg=0x%x bank=0x%x col=0x%x syn0: 0x%x syn1: 0x%x syn2: 0x%x", type == HW_EVENT_ERR_UNCORRECTED ? "UE" : "CE", rank, row, bg, bank, column, syn0, syn1, syn2); } static int handle_ce(struct mem_ctl_info *mci) { u32 eccerrcnt, ecccaddr0, ecccaddr1, ecccsyn0, ecccsyn1, ecccsyn2, row; struct al_mc_edac *al_mc = mci->pvt_info; char msg[AL_MC_EDAC_MSG_MAX]; u16 ce_count, column; unsigned long flags; u8 rank, bg, bank; eccerrcnt = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_ERR_COUNT); ce_count = FIELD_GET(AL_MC_ECC_ERR_COUNT_CE, eccerrcnt); if (!ce_count) return 0; ecccaddr0 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_ADDR0); ecccaddr1 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_ADDR1); ecccsyn0 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_SYND0); ecccsyn1 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_SYND1); ecccsyn2 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_SYND2); writel_relaxed(AL_MC_ECC_CLEAR_CE_COUNT | AL_MC_ECC_CLEAR_CE_ERR, al_mc->mmio_base + AL_MC_ECC_CLEAR); dev_dbg(mci->pdev, "eccuaddr0=0x%08x eccuaddr1=0x%08x\n", ecccaddr0, ecccaddr1); rank = FIELD_GET(AL_MC_ECC_CE_ADDR0_RANK, ecccaddr0); row = FIELD_GET(AL_MC_ECC_CE_ADDR0_ROW, ecccaddr0); bg = FIELD_GET(AL_MC_ECC_CE_ADDR1_BG, ecccaddr1); bank = FIELD_GET(AL_MC_ECC_CE_ADDR1_BANK, ecccaddr1); column = FIELD_GET(AL_MC_ECC_CE_ADDR1_COLUMN, ecccaddr1); prepare_msg(msg, sizeof(msg), HW_EVENT_ERR_CORRECTED, rank, row, bg, bank, column, ecccsyn0, ecccsyn1, ecccsyn2); spin_lock_irqsave(&al_mc->lock, flags); edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, ce_count, 0, 0, 0, 0, 0, -1, mci->ctl_name, msg); spin_unlock_irqrestore(&al_mc->lock, flags); return ce_count; } static int handle_ue(struct mem_ctl_info *mci) { u32 eccerrcnt, eccuaddr0, eccuaddr1, eccusyn0, eccusyn1, eccusyn2, row; struct al_mc_edac *al_mc = mci->pvt_info; char msg[AL_MC_EDAC_MSG_MAX]; u16 ue_count, column; unsigned long flags; u8 rank, bg, bank; eccerrcnt = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_ERR_COUNT); ue_count = FIELD_GET(AL_MC_ECC_ERR_COUNT_UE, eccerrcnt); if (!ue_count) return 0; eccuaddr0 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_ADDR0); eccuaddr1 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_ADDR1); eccusyn0 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_SYND0); eccusyn1 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_SYND1); eccusyn2 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_SYND2); writel_relaxed(AL_MC_ECC_CLEAR_UE_COUNT | AL_MC_ECC_CLEAR_UE_ERR, al_mc->mmio_base + AL_MC_ECC_CLEAR); dev_dbg(mci->pdev, "eccuaddr0=0x%08x eccuaddr1=0x%08x\n", eccuaddr0, eccuaddr1); rank = FIELD_GET(AL_MC_ECC_UE_ADDR0_RANK, eccuaddr0); row = FIELD_GET(AL_MC_ECC_UE_ADDR0_ROW, eccuaddr0); bg = FIELD_GET(AL_MC_ECC_UE_ADDR1_BG, eccuaddr1); bank = FIELD_GET(AL_MC_ECC_UE_ADDR1_BANK, eccuaddr1); column = FIELD_GET(AL_MC_ECC_UE_ADDR1_COLUMN, eccuaddr1); prepare_msg(msg, sizeof(msg), HW_EVENT_ERR_UNCORRECTED, rank, row, bg, bank, column, eccusyn0, eccusyn1, eccusyn2); spin_lock_irqsave(&al_mc->lock, flags); edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, ue_count, 0, 0, 0, 0, 0, -1, mci->ctl_name, msg); spin_unlock_irqrestore(&al_mc->lock, flags); return ue_count; } static void al_mc_edac_check(struct mem_ctl_info *mci) { struct al_mc_edac *al_mc = mci->pvt_info; if (al_mc->irq_ue <= 0) handle_ue(mci); if (al_mc->irq_ce <= 0) handle_ce(mci); } static irqreturn_t al_mc_edac_irq_handler_ue(int irq, void *info) { struct platform_device *pdev = info; struct mem_ctl_info *mci = platform_get_drvdata(pdev); if (handle_ue(mci)) return IRQ_HANDLED; return IRQ_NONE; } static irqreturn_t al_mc_edac_irq_handler_ce(int irq, void *info) { struct platform_device *pdev = info; struct mem_ctl_info *mci = platform_get_drvdata(pdev); if (handle_ce(mci)) return IRQ_HANDLED; return IRQ_NONE; } static enum scrub_type get_scrub_mode(void __iomem *mmio_base) { u32 ecccfg0; ecccfg0 = readl(mmio_base + AL_MC_ECC_CFG); if (FIELD_GET(AL_MC_ECC_CFG_SCRUB_DISABLED, ecccfg0)) return SCRUB_NONE; else return SCRUB_HW_SRC; } static void devm_al_mc_edac_free(void *data) { edac_mc_free(data); } static void devm_al_mc_edac_del(void *data) { edac_mc_del_mc(data); } static int al_mc_edac_probe(struct platform_device *pdev) { struct edac_mc_layer layers[1]; struct mem_ctl_info *mci; struct al_mc_edac *al_mc; void __iomem *mmio_base; struct dimm_info *dimm; int ret; mmio_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mmio_base)) { dev_err(&pdev->dev, "failed to ioremap memory (%ld)\n", PTR_ERR(mmio_base)); return PTR_ERR(mmio_base); } layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = 1; layers[0].is_virt_csrow = false; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct al_mc_edac)); if (!mci) return -ENOMEM; ret = devm_add_action(&pdev->dev, devm_al_mc_edac_free, mci); if (ret) { edac_mc_free(mci); return ret; } platform_set_drvdata(pdev, mci); al_mc = mci->pvt_info; al_mc->mmio_base = mmio_base; al_mc->irq_ue = of_irq_get_byname(pdev->dev.of_node, "ue"); if (al_mc->irq_ue <= 0) dev_dbg(&pdev->dev, "no IRQ defined for UE - falling back to polling\n"); al_mc->irq_ce = of_irq_get_byname(pdev->dev.of_node, "ce"); if (al_mc->irq_ce <= 0) dev_dbg(&pdev->dev, "no IRQ defined for CE - falling back to polling\n"); /* * In case both interrupts (ue/ce) are to be found, use interrupt mode. * In case none of the interrupt are foud, use polling mode. * In case only one interrupt is found, use interrupt mode for it but * keep polling mode enable for the other. */ if (al_mc->irq_ue <= 0 || al_mc->irq_ce <= 0) { edac_op_state = EDAC_OPSTATE_POLL; mci->edac_check = al_mc_edac_check; } else { edac_op_state = EDAC_OPSTATE_INT; } spin_lock_init(&al_mc->lock); mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR4; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = DRV_NAME; mci->ctl_name = "al_mc"; mci->pdev = &pdev->dev; mci->scrub_mode = get_scrub_mode(mmio_base); dimm = *mci->dimms; dimm->grain = 1; ret = edac_mc_add_mc(mci); if (ret < 0) { dev_err(&pdev->dev, "fail to add memory controller device (%d)\n", ret); return ret; } ret = devm_add_action(&pdev->dev, devm_al_mc_edac_del, &pdev->dev); if (ret) { edac_mc_del_mc(&pdev->dev); return ret; } if (al_mc->irq_ue > 0) { ret = devm_request_irq(&pdev->dev, al_mc->irq_ue, al_mc_edac_irq_handler_ue, IRQF_SHARED, pdev->name, pdev); if (ret != 0) { dev_err(&pdev->dev, "failed to request UE IRQ %d (%d)\n", al_mc->irq_ue, ret); return ret; } } if (al_mc->irq_ce > 0) { ret = devm_request_irq(&pdev->dev, al_mc->irq_ce, al_mc_edac_irq_handler_ce, IRQF_SHARED, pdev->name, pdev); if (ret != 0) { dev_err(&pdev->dev, "failed to request CE IRQ %d (%d)\n", al_mc->irq_ce, ret); return ret; } } return 0; } static const struct of_device_id al_mc_edac_of_match[] = { { .compatible = "amazon,al-mc-edac", }, {}, }; MODULE_DEVICE_TABLE(of, al_mc_edac_of_match); static struct platform_driver al_mc_edac_driver = { .probe = al_mc_edac_probe, .driver = { .name = DRV_NAME, .of_match_table = al_mc_edac_of_match, }, }; module_platform_driver(al_mc_edac_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Talel Shenhar"); MODULE_DESCRIPTION("Amazon's Annapurna Lab's Memory Controller EDAC Driver");