// SPDX-License-Identifier: GPL-2.0 /* * Extensible Firmware Interface * * Based on Extensible Firmware Interface Specification version 2.4 * * Copyright (C) 2013 - 2015 Linaro Ltd. */ #define pr_fmt(fmt) "efi: " fmt #include #include #include #include #include #include #include #include #include #include #include static int __init is_memory(efi_memory_desc_t *md) { if (md->attribute & (EFI_MEMORY_WB|EFI_MEMORY_WT|EFI_MEMORY_WC)) return 1; return 0; } /* * Translate a EFI virtual address into a physical address: this is necessary, * as some data members of the EFI system table are virtually remapped after * SetVirtualAddressMap() has been called. */ static phys_addr_t __init efi_to_phys(unsigned long addr) { efi_memory_desc_t *md; for_each_efi_memory_desc(md) { if (!(md->attribute & EFI_MEMORY_RUNTIME)) continue; if (md->virt_addr == 0) /* no virtual mapping has been installed by the stub */ break; if (md->virt_addr <= addr && (addr - md->virt_addr) < (md->num_pages << EFI_PAGE_SHIFT)) return md->phys_addr + addr - md->virt_addr; } return addr; } static __initdata unsigned long screen_info_table = EFI_INVALID_TABLE_ADDR; static __initdata unsigned long cpu_state_table = EFI_INVALID_TABLE_ADDR; static const efi_config_table_type_t arch_tables[] __initconst = { {LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID, &screen_info_table}, {LINUX_EFI_ARM_CPU_STATE_TABLE_GUID, &cpu_state_table}, {} }; static void __init init_screen_info(void) { struct screen_info *si; if (IS_ENABLED(CONFIG_ARM) && screen_info_table != EFI_INVALID_TABLE_ADDR) { si = early_memremap_ro(screen_info_table, sizeof(*si)); if (!si) { pr_err("Could not map screen_info config table\n"); return; } screen_info = *si; early_memunmap(si, sizeof(*si)); /* dummycon on ARM needs non-zero values for columns/lines */ screen_info.orig_video_cols = 80; screen_info.orig_video_lines = 25; } if (screen_info.orig_video_isVGA == VIDEO_TYPE_EFI && memblock_is_map_memory(screen_info.lfb_base)) memblock_mark_nomap(screen_info.lfb_base, screen_info.lfb_size); } static int __init uefi_init(u64 efi_system_table) { efi_config_table_t *config_tables; efi_system_table_t *systab; size_t table_size; int retval; systab = early_memremap_ro(efi_system_table, sizeof(efi_system_table_t)); if (systab == NULL) { pr_warn("Unable to map EFI system table.\n"); return -ENOMEM; } set_bit(EFI_BOOT, &efi.flags); if (IS_ENABLED(CONFIG_64BIT)) set_bit(EFI_64BIT, &efi.flags); retval = efi_systab_check_header(&systab->hdr, 2); if (retval) goto out; efi.runtime = systab->runtime; efi.runtime_version = systab->hdr.revision; efi_systab_report_header(&systab->hdr, efi_to_phys(systab->fw_vendor)); table_size = sizeof(efi_config_table_t) * systab->nr_tables; config_tables = early_memremap_ro(efi_to_phys(systab->tables), table_size); if (config_tables == NULL) { pr_warn("Unable to map EFI config table array.\n"); retval = -ENOMEM; goto out; } retval = efi_config_parse_tables(config_tables, systab->nr_tables, IS_ENABLED(CONFIG_ARM) ? arch_tables : NULL); early_memunmap(config_tables, table_size); out: early_memunmap(systab, sizeof(efi_system_table_t)); return retval; } /* * Return true for regions that can be used as System RAM. */ static __init int is_usable_memory(efi_memory_desc_t *md) { switch (md->type) { case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_ACPI_RECLAIM_MEMORY: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: case EFI_PERSISTENT_MEMORY: /* * Special purpose memory is 'soft reserved', which means it * is set aside initially, but can be hotplugged back in or * be assigned to the dax driver after boot. */ if (efi_soft_reserve_enabled() && (md->attribute & EFI_MEMORY_SP)) return false; /* * According to the spec, these regions are no longer reserved * after calling ExitBootServices(). However, we can only use * them as System RAM if they can be mapped writeback cacheable. */ return (md->attribute & EFI_MEMORY_WB); default: break; } return false; } static __init void reserve_regions(void) { efi_memory_desc_t *md; u64 paddr, npages, size; if (efi_enabled(EFI_DBG)) pr_info("Processing EFI memory map:\n"); /* * Discard memblocks discovered so far: if there are any at this * point, they originate from memory nodes in the DT, and UEFI * uses its own memory map instead. */ memblock_dump_all(); memblock_remove(0, PHYS_ADDR_MAX); for_each_efi_memory_desc(md) { paddr = md->phys_addr; npages = md->num_pages; if (efi_enabled(EFI_DBG)) { char buf[64]; pr_info(" 0x%012llx-0x%012llx %s\n", paddr, paddr + (npages << EFI_PAGE_SHIFT) - 1, efi_md_typeattr_format(buf, sizeof(buf), md)); } memrange_efi_to_native(&paddr, &npages); size = npages << PAGE_SHIFT; if (is_memory(md)) { early_init_dt_add_memory_arch(paddr, size); if (!is_usable_memory(md)) memblock_mark_nomap(paddr, size); /* keep ACPI reclaim memory intact for kexec etc. */ if (md->type == EFI_ACPI_RECLAIM_MEMORY) memblock_reserve(paddr, size); } } } void __init efi_init(void) { struct efi_memory_map_data data; u64 efi_system_table; /* Grab UEFI information placed in FDT by stub */ efi_system_table = efi_get_fdt_params(&data); if (!efi_system_table) return; if (efi_memmap_init_early(&data) < 0) { /* * If we are booting via UEFI, the UEFI memory map is the only * description of memory we have, so there is little point in * proceeding if we cannot access it. */ panic("Unable to map EFI memory map.\n"); } WARN(efi.memmap.desc_version != 1, "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", efi.memmap.desc_version); if (uefi_init(efi_system_table) < 0) { efi_memmap_unmap(); return; } reserve_regions(); efi_esrt_init(); efi_mokvar_table_init(); memblock_reserve(data.phys_map & PAGE_MASK, PAGE_ALIGN(data.size + (data.phys_map & ~PAGE_MASK))); init_screen_info(); #ifdef CONFIG_ARM /* ARM does not permit early mappings to persist across paging_init() */ efi_memmap_unmap(); if (cpu_state_table != EFI_INVALID_TABLE_ADDR) { struct efi_arm_entry_state *state; bool dump_state = true; state = early_memremap_ro(cpu_state_table, sizeof(struct efi_arm_entry_state)); if (state == NULL) { pr_warn("Unable to map CPU entry state table.\n"); return; } if ((state->sctlr_before_ebs & 1) == 0) pr_warn(FW_BUG "EFI stub was entered with MMU and Dcache disabled, please fix your firmware!\n"); else if ((state->sctlr_after_ebs & 1) == 0) pr_warn(FW_BUG "ExitBootServices() returned with MMU and Dcache disabled, please fix your firmware!\n"); else dump_state = false; if (dump_state || efi_enabled(EFI_DBG)) { pr_info("CPSR at EFI stub entry : 0x%08x\n", state->cpsr_before_ebs); pr_info("SCTLR at EFI stub entry : 0x%08x\n", state->sctlr_before_ebs); pr_info("CPSR after ExitBootServices() : 0x%08x\n", state->cpsr_after_ebs); pr_info("SCTLR after ExitBootServices(): 0x%08x\n", state->sctlr_after_ebs); } early_memunmap(state, sizeof(struct efi_arm_entry_state)); } #endif } static bool efifb_overlaps_pci_range(const struct of_pci_range *range) { u64 fb_base = screen_info.lfb_base; if (screen_info.capabilities & VIDEO_CAPABILITY_64BIT_BASE) fb_base |= (u64)(unsigned long)screen_info.ext_lfb_base << 32; return fb_base >= range->cpu_addr && fb_base < (range->cpu_addr + range->size); } static struct device_node *find_pci_overlap_node(void) { struct device_node *np; for_each_node_by_type(np, "pci") { struct of_pci_range_parser parser; struct of_pci_range range; int err; err = of_pci_range_parser_init(&parser, np); if (err) { pr_warn("of_pci_range_parser_init() failed: %d\n", err); continue; } for_each_of_pci_range(&parser, &range) if (efifb_overlaps_pci_range(&range)) return np; } return NULL; } /* * If the efifb framebuffer is backed by a PCI graphics controller, we have * to ensure that this relation is expressed using a device link when * running in DT mode, or the probe order may be reversed, resulting in a * resource reservation conflict on the memory window that the efifb * framebuffer steals from the PCIe host bridge. */ static int efifb_add_links(const struct fwnode_handle *fwnode, struct device *dev) { struct device_node *sup_np; struct device *sup_dev; sup_np = find_pci_overlap_node(); /* * If there's no PCI graphics controller backing the efifb, we are * done here. */ if (!sup_np) return 0; sup_dev = get_dev_from_fwnode(&sup_np->fwnode); of_node_put(sup_np); /* * Return -ENODEV if the PCI graphics controller device hasn't been * registered yet. This ensures that efifb isn't allowed to probe * and this function is retried again when new devices are * registered. */ if (!sup_dev) return -ENODEV; /* * If this fails, retrying this function at a later point won't * change anything. So, don't return an error after this. */ if (!device_link_add(dev, sup_dev, fw_devlink_get_flags())) dev_warn(dev, "device_link_add() failed\n"); put_device(sup_dev); return 0; } static const struct fwnode_operations efifb_fwnode_ops = { .add_links = efifb_add_links, }; static struct fwnode_handle efifb_fwnode = { .ops = &efifb_fwnode_ops, }; static int __init register_gop_device(void) { struct platform_device *pd; int err; if (screen_info.orig_video_isVGA != VIDEO_TYPE_EFI) return 0; pd = platform_device_alloc("efi-framebuffer", 0); if (!pd) return -ENOMEM; if (IS_ENABLED(CONFIG_PCI)) pd->dev.fwnode = &efifb_fwnode; err = platform_device_add_data(pd, &screen_info, sizeof(screen_info)); if (err) return err; return platform_device_add(pd); } subsys_initcall(register_gop_device);