/* * FDT related Helper functions used by the EFI stub on multiple * architectures. This should be #included by the EFI stub * implementation files. * * Copyright 2013 Linaro Limited; author Roy Franz * * This file is part of the Linux kernel, and is made available * under the terms of the GNU General Public License version 2. * */ static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, unsigned long orig_fdt_size, void *fdt, int new_fdt_size, char *cmdline_ptr, u64 initrd_addr, u64 initrd_size, efi_memory_desc_t *memory_map, unsigned long map_size, unsigned long desc_size, u32 desc_ver) { int node, prev; int status; u32 fdt_val32; u64 fdt_val64; /* * Copy definition of linux_banner here. Since this code is * built as part of the decompressor for ARM v7, pulling * in version.c where linux_banner is defined for the * kernel brings other kernel dependencies with it. */ const char linux_banner[] = "Linux version " UTS_RELEASE " (" LINUX_COMPILE_BY "@" LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION "\n"; /* Do some checks on provided FDT, if it exists*/ if (orig_fdt) { if (fdt_check_header(orig_fdt)) { pr_efi_err(sys_table, "Device Tree header not valid!\n"); return EFI_LOAD_ERROR; } /* * We don't get the size of the FDT if we get if from a * configuration table. */ if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) { pr_efi_err(sys_table, "Truncated device tree! foo!\n"); return EFI_LOAD_ERROR; } } if (orig_fdt) status = fdt_open_into(orig_fdt, fdt, new_fdt_size); else status = fdt_create_empty_tree(fdt, new_fdt_size); if (status != 0) goto fdt_set_fail; /* * Delete any memory nodes present. We must delete nodes which * early_init_dt_scan_memory may try to use. */ prev = 0; for (;;) { const char *type; int len; node = fdt_next_node(fdt, prev, NULL); if (node < 0) break; type = fdt_getprop(fdt, node, "device_type", &len); if (type && strncmp(type, "memory", len) == 0) { fdt_del_node(fdt, node); continue; } prev = node; } node = fdt_subnode_offset(fdt, 0, "chosen"); if (node < 0) { node = fdt_add_subnode(fdt, 0, "chosen"); if (node < 0) { status = node; /* node is error code when negative */ goto fdt_set_fail; } } if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) { status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr, strlen(cmdline_ptr) + 1); if (status) goto fdt_set_fail; } /* Set initrd address/end in device tree, if present */ if (initrd_size != 0) { u64 initrd_image_end; u64 initrd_image_start = cpu_to_fdt64(initrd_addr); status = fdt_setprop(fdt, node, "linux,initrd-start", &initrd_image_start, sizeof(u64)); if (status) goto fdt_set_fail; initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size); status = fdt_setprop(fdt, node, "linux,initrd-end", &initrd_image_end, sizeof(u64)); if (status) goto fdt_set_fail; } /* Add FDT entries for EFI runtime services in chosen node. */ node = fdt_subnode_offset(fdt, 0, "chosen"); fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table); status = fdt_setprop(fdt, node, "linux,uefi-system-table", &fdt_val64, sizeof(fdt_val64)); if (status) goto fdt_set_fail; fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map); status = fdt_setprop(fdt, node, "linux,uefi-mmap-start", &fdt_val64, sizeof(fdt_val64)); if (status) goto fdt_set_fail; fdt_val32 = cpu_to_fdt32(map_size); status = fdt_setprop(fdt, node, "linux,uefi-mmap-size", &fdt_val32, sizeof(fdt_val32)); if (status) goto fdt_set_fail; fdt_val32 = cpu_to_fdt32(desc_size); status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size", &fdt_val32, sizeof(fdt_val32)); if (status) goto fdt_set_fail; fdt_val32 = cpu_to_fdt32(desc_ver); status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver", &fdt_val32, sizeof(fdt_val32)); if (status) goto fdt_set_fail; /* * Add kernel version banner so stub/kernel match can be * verified. */ status = fdt_setprop_string(fdt, node, "linux,uefi-stub-kern-ver", linux_banner); if (status) goto fdt_set_fail; return EFI_SUCCESS; fdt_set_fail: if (status == -FDT_ERR_NOSPACE) return EFI_BUFFER_TOO_SMALL; return EFI_LOAD_ERROR; } #ifndef EFI_FDT_ALIGN #define EFI_FDT_ALIGN EFI_PAGE_SIZE #endif /* * Allocate memory for a new FDT, then add EFI, commandline, and * initrd related fields to the FDT. This routine increases the * FDT allocation size until the allocated memory is large * enough. EFI allocations are in EFI_PAGE_SIZE granules, * which are fixed at 4K bytes, so in most cases the first * allocation should succeed. * EFI boot services are exited at the end of this function. * There must be no allocations between the get_memory_map() * call and the exit_boot_services() call, so the exiting of * boot services is very tightly tied to the creation of the FDT * with the final memory map in it. */ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, void *handle, unsigned long *new_fdt_addr, unsigned long max_addr, u64 initrd_addr, u64 initrd_size, char *cmdline_ptr, unsigned long fdt_addr, unsigned long fdt_size) { unsigned long map_size, desc_size; u32 desc_ver; unsigned long mmap_key; efi_memory_desc_t *memory_map; unsigned long new_fdt_size; efi_status_t status; /* * Estimate size of new FDT, and allocate memory for it. We * will allocate a bigger buffer if this ends up being too * small, so a rough guess is OK here. */ new_fdt_size = fdt_size + EFI_PAGE_SIZE; while (1) { status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN, new_fdt_addr, max_addr); if (status != EFI_SUCCESS) { pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n"); goto fail; } /* * Now that we have done our final memory allocation (and free) * we can get the memory map key needed for * exit_boot_services(). */ status = efi_get_memory_map(sys_table, &memory_map, &map_size, &desc_size, &desc_ver, &mmap_key); if (status != EFI_SUCCESS) goto fail_free_new_fdt; status = update_fdt(sys_table, (void *)fdt_addr, fdt_size, (void *)*new_fdt_addr, new_fdt_size, cmdline_ptr, initrd_addr, initrd_size, memory_map, map_size, desc_size, desc_ver); /* Succeeding the first time is the expected case. */ if (status == EFI_SUCCESS) break; if (status == EFI_BUFFER_TOO_SMALL) { /* * We need to allocate more space for the new * device tree, so free existing buffer that is * too small. Also free memory map, as we will need * to get new one that reflects the free/alloc we do * on the device tree buffer. */ efi_free(sys_table, new_fdt_size, *new_fdt_addr); sys_table->boottime->free_pool(memory_map); new_fdt_size += EFI_PAGE_SIZE; } else { pr_efi_err(sys_table, "Unable to constuct new device tree.\n"); goto fail_free_mmap; } } /* Now we are ready to exit_boot_services.*/ status = sys_table->boottime->exit_boot_services(handle, mmap_key); if (status == EFI_SUCCESS) return status; pr_efi_err(sys_table, "Exit boot services failed.\n"); fail_free_mmap: sys_table->boottime->free_pool(memory_map); fail_free_new_fdt: efi_free(sys_table, new_fdt_size, *new_fdt_addr); fail: return EFI_LOAD_ERROR; } static void *get_fdt(efi_system_table_t *sys_table) { efi_guid_t fdt_guid = DEVICE_TREE_GUID; efi_config_table_t *tables; void *fdt; int i; tables = (efi_config_table_t *) sys_table->tables; fdt = NULL; for (i = 0; i < sys_table->nr_tables; i++) if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) { fdt = (void *) tables[i].table; break; } return fdt; }