// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 Linaro Ltd; */ #include #include #include #include "efistub.h" /* * Return the number of slots covered by this entry, i.e., the number of * addresses it covers that are suitably aligned and supply enough room * for the allocation. */ static unsigned long get_entry_num_slots(efi_memory_desc_t *md, unsigned long size, unsigned long align_shift) { unsigned long align = 1UL << align_shift; u64 first_slot, last_slot, region_end; if (md->type != EFI_CONVENTIONAL_MEMORY) return 0; if (efi_soft_reserve_enabled() && (md->attribute & EFI_MEMORY_SP)) return 0; region_end = min(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - 1, (u64)ULONG_MAX); if (region_end < size) return 0; first_slot = round_up(md->phys_addr, align); last_slot = round_down(region_end - size + 1, align); if (first_slot > last_slot) return 0; return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1; } /* * The UEFI memory descriptors have a virtual address field that is only used * when installing the virtual mapping using SetVirtualAddressMap(). Since it * is unused here, we can reuse it to keep track of each descriptor's slot * count. */ #define MD_NUM_SLOTS(md) ((md)->virt_addr) efi_status_t efi_random_alloc(unsigned long size, unsigned long align, unsigned long *addr, unsigned long random_seed) { unsigned long total_slots = 0, target_slot; unsigned long total_mirrored_slots = 0; struct efi_boot_memmap *map; efi_status_t status; int map_offset; status = efi_get_memory_map(&map, false); if (status != EFI_SUCCESS) return status; if (align < EFI_ALLOC_ALIGN) align = EFI_ALLOC_ALIGN; size = round_up(size, EFI_ALLOC_ALIGN); /* count the suitable slots in each memory map entry */ for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) { efi_memory_desc_t *md = (void *)map->map + map_offset; unsigned long slots; slots = get_entry_num_slots(md, size, ilog2(align)); MD_NUM_SLOTS(md) = slots; total_slots += slots; if (md->attribute & EFI_MEMORY_MORE_RELIABLE) total_mirrored_slots += slots; } /* consider only mirrored slots for randomization if any exist */ if (total_mirrored_slots > 0) total_slots = total_mirrored_slots; /* find a random number between 0 and total_slots */ target_slot = (total_slots * (u64)(random_seed & U32_MAX)) >> 32; /* * target_slot is now a value in the range [0, total_slots), and so * it corresponds with exactly one of the suitable slots we recorded * when iterating over the memory map the first time around. * * So iterate over the memory map again, subtracting the number of * slots of each entry at each iteration, until we have found the entry * that covers our chosen slot. Use the residual value of target_slot * to calculate the randomly chosen address, and allocate it directly * using EFI_ALLOCATE_ADDRESS. */ for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) { efi_memory_desc_t *md = (void *)map->map + map_offset; efi_physical_addr_t target; unsigned long pages; if (total_mirrored_slots > 0 && !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) continue; if (target_slot >= MD_NUM_SLOTS(md)) { target_slot -= MD_NUM_SLOTS(md); continue; } target = round_up(md->phys_addr, align) + target_slot * align; pages = size / EFI_PAGE_SIZE; status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, pages, &target); if (status == EFI_SUCCESS) *addr = target; break; } efi_bs_call(free_pool, map); return status; }