// SPDX-License-Identifier: GPL-2.0 /* * Common EFI memory map functions. */ #define pr_fmt(fmt) "efi: " fmt #include #include #include #include #include #include #include static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size) { return memblock_phys_alloc(size, SMP_CACHE_BYTES); } static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size) { unsigned int order = get_order(size); struct page *p = alloc_pages(GFP_KERNEL, order); if (!p) return 0; return PFN_PHYS(page_to_pfn(p)); } void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags) { if (flags & EFI_MEMMAP_MEMBLOCK) { if (slab_is_available()) memblock_free_late(phys, size); else memblock_phys_free(phys, size); } else if (flags & EFI_MEMMAP_SLAB) { struct page *p = pfn_to_page(PHYS_PFN(phys)); unsigned int order = get_order(size); free_pages((unsigned long) page_address(p), order); } } static void __init efi_memmap_free(void) { __efi_memmap_free(efi.memmap.phys_map, efi.memmap.desc_size * efi.memmap.nr_map, efi.memmap.flags); } /** * efi_memmap_alloc - Allocate memory for the EFI memory map * @num_entries: Number of entries in the allocated map. * @data: efi memmap installation parameters * * Depending on whether mm_init() has already been invoked or not, * either memblock or "normal" page allocation is used. * * Returns zero on success, a negative error code on failure. */ int __init efi_memmap_alloc(unsigned int num_entries, struct efi_memory_map_data *data) { /* Expect allocation parameters are zero initialized */ WARN_ON(data->phys_map || data->size); data->size = num_entries * efi.memmap.desc_size; data->desc_version = efi.memmap.desc_version; data->desc_size = efi.memmap.desc_size; data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK); data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE; if (slab_is_available()) { data->flags |= EFI_MEMMAP_SLAB; data->phys_map = __efi_memmap_alloc_late(data->size); } else { data->flags |= EFI_MEMMAP_MEMBLOCK; data->phys_map = __efi_memmap_alloc_early(data->size); } if (!data->phys_map) return -ENOMEM; return 0; } /** * __efi_memmap_init - Common code for mapping the EFI memory map * @data: EFI memory map data * * This function takes care of figuring out which function to use to * map the EFI memory map in efi.memmap based on how far into the boot * we are. * * During bootup EFI_MEMMAP_LATE in data->flags should be clear since we * only have access to the early_memremap*() functions as the vmalloc * space isn't setup. Once the kernel is fully booted we can fallback * to the more robust memremap*() API. * * Returns zero on success, a negative error code on failure. */ static int __init __efi_memmap_init(struct efi_memory_map_data *data) { struct efi_memory_map map; phys_addr_t phys_map; if (efi_enabled(EFI_PARAVIRT)) return 0; phys_map = data->phys_map; if (data->flags & EFI_MEMMAP_LATE) map.map = memremap(phys_map, data->size, MEMREMAP_WB); else map.map = early_memremap(phys_map, data->size); if (!map.map) { pr_err("Could not map the memory map!\n"); return -ENOMEM; } /* NOP if data->flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB) == 0 */ efi_memmap_free(); map.phys_map = data->phys_map; map.nr_map = data->size / data->desc_size; map.map_end = map.map + data->size; map.desc_version = data->desc_version; map.desc_size = data->desc_size; map.flags = data->flags; set_bit(EFI_MEMMAP, &efi.flags); efi.memmap = map; return 0; } /** * efi_memmap_init_early - Map the EFI memory map data structure * @data: EFI memory map data * * Use early_memremap() to map the passed in EFI memory map and assign * it to efi.memmap. */ int __init efi_memmap_init_early(struct efi_memory_map_data *data) { /* Cannot go backwards */ WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE); data->flags = 0; return __efi_memmap_init(data); } void __init efi_memmap_unmap(void) { if (!efi_enabled(EFI_MEMMAP)) return; if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) { unsigned long size; size = efi.memmap.desc_size * efi.memmap.nr_map; early_memunmap(efi.memmap.map, size); } else { memunmap(efi.memmap.map); } efi.memmap.map = NULL; clear_bit(EFI_MEMMAP, &efi.flags); } /** * efi_memmap_init_late - Map efi.memmap with memremap() * @phys_addr: Physical address of the new EFI memory map * @size: Size in bytes of the new EFI memory map * * Setup a mapping of the EFI memory map using ioremap_cache(). This * function should only be called once the vmalloc space has been * setup and is therefore not suitable for calling during early EFI * initialise, e.g. in efi_init(). Additionally, it expects * efi_memmap_init_early() to have already been called. * * The reason there are two EFI memmap initialisation * (efi_memmap_init_early() and this late version) is because the * early EFI memmap should be explicitly unmapped once EFI * initialisation is complete as the fixmap space used to map the EFI * memmap (via early_memremap()) is a scarce resource. * * This late mapping is intended to persist for the duration of * runtime so that things like efi_mem_desc_lookup() and * efi_mem_attributes() always work. * * Returns zero on success, a negative error code on failure. */ int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size) { struct efi_memory_map_data data = { .phys_map = addr, .size = size, .flags = EFI_MEMMAP_LATE, }; /* Did we forget to unmap the early EFI memmap? */ WARN_ON(efi.memmap.map); /* Were we already called? */ WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE); /* * It makes no sense to allow callers to register different * values for the following fields. Copy them out of the * existing early EFI memmap. */ data.desc_version = efi.memmap.desc_version; data.desc_size = efi.memmap.desc_size; return __efi_memmap_init(&data); } /** * efi_memmap_install - Install a new EFI memory map in efi.memmap * @ctx: map allocation parameters (address, size, flags) * * Unlike efi_memmap_init_*(), this function does not allow the caller * to switch from early to late mappings. It simply uses the existing * mapping function and installs the new memmap. * * Returns zero on success, a negative error code on failure. */ int __init efi_memmap_install(struct efi_memory_map_data *data) { efi_memmap_unmap(); return __efi_memmap_init(data); } /** * efi_memmap_split_count - Count number of additional EFI memmap entries * @md: EFI memory descriptor to split * @range: Address range (start, end) to split around * * Returns the number of additional EFI memmap entries required to * accommodate @range. */ int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range) { u64 m_start, m_end; u64 start, end; int count = 0; start = md->phys_addr; end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1; /* modifying range */ m_start = range->start; m_end = range->end; if (m_start <= start) { /* split into 2 parts */ if (start < m_end && m_end < end) count++; } if (start < m_start && m_start < end) { /* split into 3 parts */ if (m_end < end) count += 2; /* split into 2 parts */ if (end <= m_end) count++; } return count; } /** * efi_memmap_insert - Insert a memory region in an EFI memmap * @old_memmap: The existing EFI memory map structure * @buf: Address of buffer to store new map * @mem: Memory map entry to insert * * It is suggested that you call efi_memmap_split_count() first * to see how large @buf needs to be. */ void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf, struct efi_mem_range *mem) { u64 m_start, m_end, m_attr; efi_memory_desc_t *md; u64 start, end; void *old, *new; /* modifying range */ m_start = mem->range.start; m_end = mem->range.end; m_attr = mem->attribute; /* * The EFI memory map deals with regions in EFI_PAGE_SIZE * units. Ensure that the region described by 'mem' is aligned * correctly. */ if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) || !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) { WARN_ON(1); return; } for (old = old_memmap->map, new = buf; old < old_memmap->map_end; old += old_memmap->desc_size, new += old_memmap->desc_size) { /* copy original EFI memory descriptor */ memcpy(new, old, old_memmap->desc_size); md = new; start = md->phys_addr; end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; if (m_start <= start && end <= m_end) md->attribute |= m_attr; if (m_start <= start && (start < m_end && m_end < end)) { /* first part */ md->attribute |= m_attr; md->num_pages = (m_end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; /* latter part */ new += old_memmap->desc_size; memcpy(new, old, old_memmap->desc_size); md = new; md->phys_addr = m_end + 1; md->num_pages = (end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; } if ((start < m_start && m_start < end) && m_end < end) { /* first part */ md->num_pages = (m_start - md->phys_addr) >> EFI_PAGE_SHIFT; /* middle part */ new += old_memmap->desc_size; memcpy(new, old, old_memmap->desc_size); md = new; md->attribute |= m_attr; md->phys_addr = m_start; md->num_pages = (m_end - m_start + 1) >> EFI_PAGE_SHIFT; /* last part */ new += old_memmap->desc_size; memcpy(new, old, old_memmap->desc_size); md = new; md->phys_addr = m_end + 1; md->num_pages = (end - m_end) >> EFI_PAGE_SHIFT; } if ((start < m_start && m_start < end) && (end <= m_end)) { /* first part */ md->num_pages = (m_start - md->phys_addr) >> EFI_PAGE_SHIFT; /* latter part */ new += old_memmap->desc_size; memcpy(new, old, old_memmap->desc_size); md = new; md->phys_addr = m_start; md->num_pages = (end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; md->attribute |= m_attr; } } }