// SPDX-License-Identifier: GPL-2.0 /* * Driver for FPGA Management Engine (FME) * * Copyright (C) 2017-2018 Intel Corporation, Inc. * * Authors: * Kang Luwei * Xiao Guangrong * Joseph Grecco * Enno Luebbers * Tim Whisonant * Ananda Ravuri * Henry Mitchel */ #include #include #include #include #include #include #include "dfl.h" #include "dfl-fme.h" static ssize_t ports_num_show(struct device *dev, struct device_attribute *attr, char *buf) { void __iomem *base; u64 v; base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER); v = readq(base + FME_HDR_CAP); return scnprintf(buf, PAGE_SIZE, "%u\n", (unsigned int)FIELD_GET(FME_CAP_NUM_PORTS, v)); } static DEVICE_ATTR_RO(ports_num); /* * Bitstream (static FPGA region) identifier number. It contains the * detailed version and other information of this static FPGA region. */ static ssize_t bitstream_id_show(struct device *dev, struct device_attribute *attr, char *buf) { void __iomem *base; u64 v; base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER); v = readq(base + FME_HDR_BITSTREAM_ID); return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v); } static DEVICE_ATTR_RO(bitstream_id); /* * Bitstream (static FPGA region) meta data. It contains the synthesis * date, seed and other information of this static FPGA region. */ static ssize_t bitstream_metadata_show(struct device *dev, struct device_attribute *attr, char *buf) { void __iomem *base; u64 v; base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER); v = readq(base + FME_HDR_BITSTREAM_MD); return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v); } static DEVICE_ATTR_RO(bitstream_metadata); static ssize_t cache_size_show(struct device *dev, struct device_attribute *attr, char *buf) { void __iomem *base; u64 v; base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER); v = readq(base + FME_HDR_CAP); return sprintf(buf, "%u\n", (unsigned int)FIELD_GET(FME_CAP_CACHE_SIZE, v)); } static DEVICE_ATTR_RO(cache_size); static ssize_t fabric_version_show(struct device *dev, struct device_attribute *attr, char *buf) { void __iomem *base; u64 v; base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER); v = readq(base + FME_HDR_CAP); return sprintf(buf, "%u\n", (unsigned int)FIELD_GET(FME_CAP_FABRIC_VERID, v)); } static DEVICE_ATTR_RO(fabric_version); static ssize_t socket_id_show(struct device *dev, struct device_attribute *attr, char *buf) { void __iomem *base; u64 v; base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER); v = readq(base + FME_HDR_CAP); return sprintf(buf, "%u\n", (unsigned int)FIELD_GET(FME_CAP_SOCKET_ID, v)); } static DEVICE_ATTR_RO(socket_id); static struct attribute *fme_hdr_attrs[] = { &dev_attr_ports_num.attr, &dev_attr_bitstream_id.attr, &dev_attr_bitstream_metadata.attr, &dev_attr_cache_size.attr, &dev_attr_fabric_version.attr, &dev_attr_socket_id.attr, NULL, }; static const struct attribute_group fme_hdr_group = { .attrs = fme_hdr_attrs, }; static long fme_hdr_ioctl_release_port(struct dfl_feature_platform_data *pdata, unsigned long arg) { struct dfl_fpga_cdev *cdev = pdata->dfl_cdev; int port_id; if (get_user(port_id, (int __user *)arg)) return -EFAULT; return dfl_fpga_cdev_release_port(cdev, port_id); } static long fme_hdr_ioctl_assign_port(struct dfl_feature_platform_data *pdata, unsigned long arg) { struct dfl_fpga_cdev *cdev = pdata->dfl_cdev; int port_id; if (get_user(port_id, (int __user *)arg)) return -EFAULT; return dfl_fpga_cdev_assign_port(cdev, port_id); } static long fme_hdr_ioctl(struct platform_device *pdev, struct dfl_feature *feature, unsigned int cmd, unsigned long arg) { struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev); switch (cmd) { case DFL_FPGA_FME_PORT_RELEASE: return fme_hdr_ioctl_release_port(pdata, arg); case DFL_FPGA_FME_PORT_ASSIGN: return fme_hdr_ioctl_assign_port(pdata, arg); } return -ENODEV; } static const struct dfl_feature_id fme_hdr_id_table[] = { {.id = FME_FEATURE_ID_HEADER,}, {0,} }; static const struct dfl_feature_ops fme_hdr_ops = { .ioctl = fme_hdr_ioctl, }; #define FME_THERM_THRESHOLD 0x8 #define TEMP_THRESHOLD1 GENMASK_ULL(6, 0) #define TEMP_THRESHOLD1_EN BIT_ULL(7) #define TEMP_THRESHOLD2 GENMASK_ULL(14, 8) #define TEMP_THRESHOLD2_EN BIT_ULL(15) #define TRIP_THRESHOLD GENMASK_ULL(30, 24) #define TEMP_THRESHOLD1_STATUS BIT_ULL(32) /* threshold1 reached */ #define TEMP_THRESHOLD2_STATUS BIT_ULL(33) /* threshold2 reached */ /* threshold1 policy: 0 - AP2 (90% throttle) / 1 - AP1 (50% throttle) */ #define TEMP_THRESHOLD1_POLICY BIT_ULL(44) #define FME_THERM_RDSENSOR_FMT1 0x10 #define FPGA_TEMPERATURE GENMASK_ULL(6, 0) #define FME_THERM_CAP 0x20 #define THERM_NO_THROTTLE BIT_ULL(0) #define MD_PRE_DEG static bool fme_thermal_throttle_support(void __iomem *base) { u64 v = readq(base + FME_THERM_CAP); return FIELD_GET(THERM_NO_THROTTLE, v) ? false : true; } static umode_t thermal_hwmon_attrs_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { const struct dfl_feature *feature = drvdata; /* temperature is always supported, and check hardware cap for others */ if (attr == hwmon_temp_input) return 0444; return fme_thermal_throttle_support(feature->ioaddr) ? 0444 : 0; } static int thermal_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct dfl_feature *feature = dev_get_drvdata(dev); u64 v; switch (attr) { case hwmon_temp_input: v = readq(feature->ioaddr + FME_THERM_RDSENSOR_FMT1); *val = (long)(FIELD_GET(FPGA_TEMPERATURE, v) * 1000); break; case hwmon_temp_max: v = readq(feature->ioaddr + FME_THERM_THRESHOLD); *val = (long)(FIELD_GET(TEMP_THRESHOLD1, v) * 1000); break; case hwmon_temp_crit: v = readq(feature->ioaddr + FME_THERM_THRESHOLD); *val = (long)(FIELD_GET(TEMP_THRESHOLD2, v) * 1000); break; case hwmon_temp_emergency: v = readq(feature->ioaddr + FME_THERM_THRESHOLD); *val = (long)(FIELD_GET(TRIP_THRESHOLD, v) * 1000); break; case hwmon_temp_max_alarm: v = readq(feature->ioaddr + FME_THERM_THRESHOLD); *val = (long)FIELD_GET(TEMP_THRESHOLD1_STATUS, v); break; case hwmon_temp_crit_alarm: v = readq(feature->ioaddr + FME_THERM_THRESHOLD); *val = (long)FIELD_GET(TEMP_THRESHOLD2_STATUS, v); break; default: return -EOPNOTSUPP; } return 0; } static const struct hwmon_ops thermal_hwmon_ops = { .is_visible = thermal_hwmon_attrs_visible, .read = thermal_hwmon_read, }; static const struct hwmon_channel_info *thermal_hwmon_info[] = { HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_EMERGENCY | HWMON_T_MAX | HWMON_T_MAX_ALARM | HWMON_T_CRIT | HWMON_T_CRIT_ALARM), NULL }; static const struct hwmon_chip_info thermal_hwmon_chip_info = { .ops = &thermal_hwmon_ops, .info = thermal_hwmon_info, }; static ssize_t temp1_max_policy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dfl_feature *feature = dev_get_drvdata(dev); u64 v; v = readq(feature->ioaddr + FME_THERM_THRESHOLD); return sprintf(buf, "%u\n", (unsigned int)FIELD_GET(TEMP_THRESHOLD1_POLICY, v)); } static DEVICE_ATTR_RO(temp1_max_policy); static struct attribute *thermal_extra_attrs[] = { &dev_attr_temp1_max_policy.attr, NULL, }; static umode_t thermal_extra_attrs_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct dfl_feature *feature = dev_get_drvdata(dev); return fme_thermal_throttle_support(feature->ioaddr) ? attr->mode : 0; } static const struct attribute_group thermal_extra_group = { .attrs = thermal_extra_attrs, .is_visible = thermal_extra_attrs_visible, }; __ATTRIBUTE_GROUPS(thermal_extra); static int fme_thermal_mgmt_init(struct platform_device *pdev, struct dfl_feature *feature) { struct device *hwmon; /* * create hwmon to allow userspace monitoring temperature and other * threshold information. * * temp1_input -> FPGA device temperature * temp1_max -> hardware threshold 1 -> 50% or 90% throttling * temp1_crit -> hardware threshold 2 -> 100% throttling * temp1_emergency -> hardware trip_threshold to shutdown FPGA * temp1_max_alarm -> hardware threshold 1 alarm * temp1_crit_alarm -> hardware threshold 2 alarm * * create device specific sysfs interfaces, e.g. read temp1_max_policy * to understand the actual hardware throttling action (50% vs 90%). * * If hardware doesn't support automatic throttling per thresholds, * then all above sysfs interfaces are not visible except temp1_input * for temperature. */ hwmon = devm_hwmon_device_register_with_info(&pdev->dev, "dfl_fme_thermal", feature, &thermal_hwmon_chip_info, thermal_extra_groups); if (IS_ERR(hwmon)) { dev_err(&pdev->dev, "Fail to register thermal hwmon\n"); return PTR_ERR(hwmon); } return 0; } static const struct dfl_feature_id fme_thermal_mgmt_id_table[] = { {.id = FME_FEATURE_ID_THERMAL_MGMT,}, {0,} }; static const struct dfl_feature_ops fme_thermal_mgmt_ops = { .init = fme_thermal_mgmt_init, }; #define FME_PWR_STATUS 0x8 #define FME_LATENCY_TOLERANCE BIT_ULL(18) #define PWR_CONSUMED GENMASK_ULL(17, 0) #define FME_PWR_THRESHOLD 0x10 #define PWR_THRESHOLD1 GENMASK_ULL(6, 0) /* in Watts */ #define PWR_THRESHOLD2 GENMASK_ULL(14, 8) /* in Watts */ #define PWR_THRESHOLD_MAX 0x7f /* in Watts */ #define PWR_THRESHOLD1_STATUS BIT_ULL(16) #define PWR_THRESHOLD2_STATUS BIT_ULL(17) #define FME_PWR_XEON_LIMIT 0x18 #define XEON_PWR_LIMIT GENMASK_ULL(14, 0) /* in 0.1 Watts */ #define XEON_PWR_EN BIT_ULL(15) #define FME_PWR_FPGA_LIMIT 0x20 #define FPGA_PWR_LIMIT GENMASK_ULL(14, 0) /* in 0.1 Watts */ #define FPGA_PWR_EN BIT_ULL(15) static int power_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct dfl_feature *feature = dev_get_drvdata(dev); u64 v; switch (attr) { case hwmon_power_input: v = readq(feature->ioaddr + FME_PWR_STATUS); *val = (long)(FIELD_GET(PWR_CONSUMED, v) * 1000000); break; case hwmon_power_max: v = readq(feature->ioaddr + FME_PWR_THRESHOLD); *val = (long)(FIELD_GET(PWR_THRESHOLD1, v) * 1000000); break; case hwmon_power_crit: v = readq(feature->ioaddr + FME_PWR_THRESHOLD); *val = (long)(FIELD_GET(PWR_THRESHOLD2, v) * 1000000); break; case hwmon_power_max_alarm: v = readq(feature->ioaddr + FME_PWR_THRESHOLD); *val = (long)FIELD_GET(PWR_THRESHOLD1_STATUS, v); break; case hwmon_power_crit_alarm: v = readq(feature->ioaddr + FME_PWR_THRESHOLD); *val = (long)FIELD_GET(PWR_THRESHOLD2_STATUS, v); break; default: return -EOPNOTSUPP; } return 0; } static int power_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct dfl_feature_platform_data *pdata = dev_get_platdata(dev->parent); struct dfl_feature *feature = dev_get_drvdata(dev); int ret = 0; u64 v; val = clamp_val(val / 1000000, 0, PWR_THRESHOLD_MAX); mutex_lock(&pdata->lock); switch (attr) { case hwmon_power_max: v = readq(feature->ioaddr + FME_PWR_THRESHOLD); v &= ~PWR_THRESHOLD1; v |= FIELD_PREP(PWR_THRESHOLD1, val); writeq(v, feature->ioaddr + FME_PWR_THRESHOLD); break; case hwmon_power_crit: v = readq(feature->ioaddr + FME_PWR_THRESHOLD); v &= ~PWR_THRESHOLD2; v |= FIELD_PREP(PWR_THRESHOLD2, val); writeq(v, feature->ioaddr + FME_PWR_THRESHOLD); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&pdata->lock); return ret; } static umode_t power_hwmon_attrs_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { switch (attr) { case hwmon_power_input: case hwmon_power_max_alarm: case hwmon_power_crit_alarm: return 0444; case hwmon_power_max: case hwmon_power_crit: return 0644; } return 0; } static const struct hwmon_ops power_hwmon_ops = { .is_visible = power_hwmon_attrs_visible, .read = power_hwmon_read, .write = power_hwmon_write, }; static const struct hwmon_channel_info *power_hwmon_info[] = { HWMON_CHANNEL_INFO(power, HWMON_P_INPUT | HWMON_P_MAX | HWMON_P_MAX_ALARM | HWMON_P_CRIT | HWMON_P_CRIT_ALARM), NULL }; static const struct hwmon_chip_info power_hwmon_chip_info = { .ops = &power_hwmon_ops, .info = power_hwmon_info, }; static ssize_t power1_xeon_limit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dfl_feature *feature = dev_get_drvdata(dev); u16 xeon_limit = 0; u64 v; v = readq(feature->ioaddr + FME_PWR_XEON_LIMIT); if (FIELD_GET(XEON_PWR_EN, v)) xeon_limit = FIELD_GET(XEON_PWR_LIMIT, v); return sprintf(buf, "%u\n", xeon_limit * 100000); } static ssize_t power1_fpga_limit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dfl_feature *feature = dev_get_drvdata(dev); u16 fpga_limit = 0; u64 v; v = readq(feature->ioaddr + FME_PWR_FPGA_LIMIT); if (FIELD_GET(FPGA_PWR_EN, v)) fpga_limit = FIELD_GET(FPGA_PWR_LIMIT, v); return sprintf(buf, "%u\n", fpga_limit * 100000); } static ssize_t power1_ltr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dfl_feature *feature = dev_get_drvdata(dev); u64 v; v = readq(feature->ioaddr + FME_PWR_STATUS); return sprintf(buf, "%u\n", (unsigned int)FIELD_GET(FME_LATENCY_TOLERANCE, v)); } static DEVICE_ATTR_RO(power1_xeon_limit); static DEVICE_ATTR_RO(power1_fpga_limit); static DEVICE_ATTR_RO(power1_ltr); static struct attribute *power_extra_attrs[] = { &dev_attr_power1_xeon_limit.attr, &dev_attr_power1_fpga_limit.attr, &dev_attr_power1_ltr.attr, NULL }; ATTRIBUTE_GROUPS(power_extra); static int fme_power_mgmt_init(struct platform_device *pdev, struct dfl_feature *feature) { struct device *hwmon; hwmon = devm_hwmon_device_register_with_info(&pdev->dev, "dfl_fme_power", feature, &power_hwmon_chip_info, power_extra_groups); if (IS_ERR(hwmon)) { dev_err(&pdev->dev, "Fail to register power hwmon\n"); return PTR_ERR(hwmon); } return 0; } static const struct dfl_feature_id fme_power_mgmt_id_table[] = { {.id = FME_FEATURE_ID_POWER_MGMT,}, {0,} }; static const struct dfl_feature_ops fme_power_mgmt_ops = { .init = fme_power_mgmt_init, }; static struct dfl_feature_driver fme_feature_drvs[] = { { .id_table = fme_hdr_id_table, .ops = &fme_hdr_ops, }, { .id_table = fme_pr_mgmt_id_table, .ops = &fme_pr_mgmt_ops, }, { .id_table = fme_global_err_id_table, .ops = &fme_global_err_ops, }, { .id_table = fme_thermal_mgmt_id_table, .ops = &fme_thermal_mgmt_ops, }, { .id_table = fme_power_mgmt_id_table, .ops = &fme_power_mgmt_ops, }, { .ops = NULL, }, }; static long fme_ioctl_check_extension(struct dfl_feature_platform_data *pdata, unsigned long arg) { /* No extension support for now */ return 0; } static int fme_open(struct inode *inode, struct file *filp) { struct platform_device *fdev = dfl_fpga_inode_to_feature_dev(inode); struct dfl_feature_platform_data *pdata = dev_get_platdata(&fdev->dev); int ret; if (WARN_ON(!pdata)) return -ENODEV; ret = dfl_feature_dev_use_begin(pdata); if (ret) return ret; dev_dbg(&fdev->dev, "Device File Open\n"); filp->private_data = pdata; return 0; } static int fme_release(struct inode *inode, struct file *filp) { struct dfl_feature_platform_data *pdata = filp->private_data; struct platform_device *pdev = pdata->dev; dev_dbg(&pdev->dev, "Device File Release\n"); dfl_feature_dev_use_end(pdata); return 0; } static long fme_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct dfl_feature_platform_data *pdata = filp->private_data; struct platform_device *pdev = pdata->dev; struct dfl_feature *f; long ret; dev_dbg(&pdev->dev, "%s cmd 0x%x\n", __func__, cmd); switch (cmd) { case DFL_FPGA_GET_API_VERSION: return DFL_FPGA_API_VERSION; case DFL_FPGA_CHECK_EXTENSION: return fme_ioctl_check_extension(pdata, arg); default: /* * Let sub-feature's ioctl function to handle the cmd. * Sub-feature's ioctl returns -ENODEV when cmd is not * handled in this sub feature, and returns 0 or other * error code if cmd is handled. */ dfl_fpga_dev_for_each_feature(pdata, f) { if (f->ops && f->ops->ioctl) { ret = f->ops->ioctl(pdev, f, cmd, arg); if (ret != -ENODEV) return ret; } } } return -EINVAL; } static int fme_dev_init(struct platform_device *pdev) { struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev); struct dfl_fme *fme; fme = devm_kzalloc(&pdev->dev, sizeof(*fme), GFP_KERNEL); if (!fme) return -ENOMEM; fme->pdata = pdata; mutex_lock(&pdata->lock); dfl_fpga_pdata_set_private(pdata, fme); mutex_unlock(&pdata->lock); return 0; } static void fme_dev_destroy(struct platform_device *pdev) { struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev); mutex_lock(&pdata->lock); dfl_fpga_pdata_set_private(pdata, NULL); mutex_unlock(&pdata->lock); } static const struct file_operations fme_fops = { .owner = THIS_MODULE, .open = fme_open, .release = fme_release, .unlocked_ioctl = fme_ioctl, }; static int fme_probe(struct platform_device *pdev) { int ret; ret = fme_dev_init(pdev); if (ret) goto exit; ret = dfl_fpga_dev_feature_init(pdev, fme_feature_drvs); if (ret) goto dev_destroy; ret = dfl_fpga_dev_ops_register(pdev, &fme_fops, THIS_MODULE); if (ret) goto feature_uinit; return 0; feature_uinit: dfl_fpga_dev_feature_uinit(pdev); dev_destroy: fme_dev_destroy(pdev); exit: return ret; } static int fme_remove(struct platform_device *pdev) { dfl_fpga_dev_ops_unregister(pdev); dfl_fpga_dev_feature_uinit(pdev); fme_dev_destroy(pdev); return 0; } static const struct attribute_group *fme_dev_groups[] = { &fme_hdr_group, &fme_global_err_group, NULL }; static struct platform_driver fme_driver = { .driver = { .name = DFL_FPGA_FEATURE_DEV_FME, .dev_groups = fme_dev_groups, }, .probe = fme_probe, .remove = fme_remove, }; module_platform_driver(fme_driver); MODULE_DESCRIPTION("FPGA Management Engine driver"); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:dfl-fme");