// SPDX-License-Identifier: GPL-2.0-only /* * A FSI master controller, using a simple GPIO bit-banging interface */ #include #include #include #include #include #include #include #include #include #include #include #include "fsi-master.h" #define FSI_GPIO_STD_DLY 1 /* Standard pin delay in nS */ #define LAST_ADDR_INVALID 0x1 struct fsi_master_gpio { struct fsi_master master; struct device *dev; struct mutex cmd_lock; /* mutex for command ordering */ struct gpio_desc *gpio_clk; struct gpio_desc *gpio_data; struct gpio_desc *gpio_trans; /* Voltage translator */ struct gpio_desc *gpio_enable; /* FSI enable */ struct gpio_desc *gpio_mux; /* Mux control */ bool external_mode; bool no_delays; uint32_t last_addr; uint8_t t_send_delay; uint8_t t_echo_delay; }; #define CREATE_TRACE_POINTS #include #define to_fsi_master_gpio(m) container_of(m, struct fsi_master_gpio, master) struct fsi_gpio_msg { uint64_t msg; uint8_t bits; }; static void clock_toggle(struct fsi_master_gpio *master, int count) { int i; for (i = 0; i < count; i++) { if (!master->no_delays) ndelay(FSI_GPIO_STD_DLY); gpiod_set_value(master->gpio_clk, 0); if (!master->no_delays) ndelay(FSI_GPIO_STD_DLY); gpiod_set_value(master->gpio_clk, 1); } } static int sda_clock_in(struct fsi_master_gpio *master) { int in; if (!master->no_delays) ndelay(FSI_GPIO_STD_DLY); gpiod_set_value(master->gpio_clk, 0); /* Dummy read to feed the synchronizers */ gpiod_get_value(master->gpio_data); /* Actual data read */ in = gpiod_get_value(master->gpio_data); if (!master->no_delays) ndelay(FSI_GPIO_STD_DLY); gpiod_set_value(master->gpio_clk, 1); return in ? 1 : 0; } static void sda_out(struct fsi_master_gpio *master, int value) { gpiod_set_value(master->gpio_data, value); } static void set_sda_input(struct fsi_master_gpio *master) { gpiod_direction_input(master->gpio_data); gpiod_set_value(master->gpio_trans, 0); } static void set_sda_output(struct fsi_master_gpio *master, int value) { gpiod_set_value(master->gpio_trans, 1); gpiod_direction_output(master->gpio_data, value); } static void clock_zeros(struct fsi_master_gpio *master, int count) { trace_fsi_master_gpio_clock_zeros(master, count); set_sda_output(master, 1); clock_toggle(master, count); } static void echo_delay(struct fsi_master_gpio *master) { clock_zeros(master, master->t_echo_delay); } static void serial_in(struct fsi_master_gpio *master, struct fsi_gpio_msg *msg, uint8_t num_bits) { uint8_t bit, in_bit; set_sda_input(master); for (bit = 0; bit < num_bits; bit++) { in_bit = sda_clock_in(master); msg->msg <<= 1; msg->msg |= ~in_bit & 0x1; /* Data is active low */ } msg->bits += num_bits; trace_fsi_master_gpio_in(master, num_bits, msg->msg); } static void serial_out(struct fsi_master_gpio *master, const struct fsi_gpio_msg *cmd) { uint8_t bit; uint64_t msg = ~cmd->msg; /* Data is active low */ uint64_t sda_mask = 0x1ULL << (cmd->bits - 1); uint64_t last_bit = ~0; int next_bit; trace_fsi_master_gpio_out(master, cmd->bits, cmd->msg); if (!cmd->bits) { dev_warn(master->dev, "trying to output 0 bits\n"); return; } set_sda_output(master, 0); /* Send the start bit */ sda_out(master, 0); clock_toggle(master, 1); /* Send the message */ for (bit = 0; bit < cmd->bits; bit++) { next_bit = (msg & sda_mask) >> (cmd->bits - 1); if (last_bit ^ next_bit) { sda_out(master, next_bit); last_bit = next_bit; } clock_toggle(master, 1); msg <<= 1; } } static void msg_push_bits(struct fsi_gpio_msg *msg, uint64_t data, int bits) { msg->msg <<= bits; msg->msg |= data & ((1ull << bits) - 1); msg->bits += bits; } static void msg_push_crc(struct fsi_gpio_msg *msg) { uint8_t crc; int top; top = msg->bits & 0x3; /* start bit, and any non-aligned top bits */ crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1); /* aligned bits */ crc = crc4(crc, msg->msg, msg->bits - top); msg_push_bits(msg, crc, 4); } static bool check_same_address(struct fsi_master_gpio *master, int id, uint32_t addr) { /* this will also handle LAST_ADDR_INVALID */ return master->last_addr == (((id & 0x3) << 21) | (addr & ~0x3)); } static bool check_relative_address(struct fsi_master_gpio *master, int id, uint32_t addr, uint32_t *rel_addrp) { uint32_t last_addr = master->last_addr; int32_t rel_addr; if (last_addr == LAST_ADDR_INVALID) return false; /* We may be in 23-bit addressing mode, which uses the id as the * top two address bits. So, if we're referencing a different ID, * use absolute addresses. */ if (((last_addr >> 21) & 0x3) != id) return false; /* remove the top two bits from any 23-bit addressing */ last_addr &= (1 << 21) - 1; /* We know that the addresses are limited to 21 bits, so this won't * overflow the signed rel_addr */ rel_addr = addr - last_addr; if (rel_addr > 255 || rel_addr < -256) return false; *rel_addrp = (uint32_t)rel_addr; return true; } static void last_address_update(struct fsi_master_gpio *master, int id, bool valid, uint32_t addr) { if (!valid) master->last_addr = LAST_ADDR_INVALID; else master->last_addr = ((id & 0x3) << 21) | (addr & ~0x3); } /* * Encode an Absolute/Relative/Same Address command */ static void build_ar_command(struct fsi_master_gpio *master, struct fsi_gpio_msg *cmd, uint8_t id, uint32_t addr, size_t size, const void *data) { int i, addr_bits, opcode_bits; bool write = !!data; uint8_t ds, opcode; uint32_t rel_addr; cmd->bits = 0; cmd->msg = 0; /* we have 21 bits of address max */ addr &= ((1 << 21) - 1); /* cmd opcodes are variable length - SAME_AR is only two bits */ opcode_bits = 3; if (check_same_address(master, id, addr)) { /* we still address the byte offset within the word */ addr_bits = 2; opcode_bits = 2; opcode = FSI_CMD_SAME_AR; trace_fsi_master_gpio_cmd_same_addr(master); } else if (check_relative_address(master, id, addr, &rel_addr)) { /* 8 bits plus sign */ addr_bits = 9; addr = rel_addr; opcode = FSI_CMD_REL_AR; trace_fsi_master_gpio_cmd_rel_addr(master, rel_addr); } else { addr_bits = 21; opcode = FSI_CMD_ABS_AR; trace_fsi_master_gpio_cmd_abs_addr(master, addr); } /* * The read/write size is encoded in the lower bits of the address * (as it must be naturally-aligned), and the following ds bit. * * size addr:1 addr:0 ds * 1 x x 0 * 2 x 0 1 * 4 0 1 1 * */ ds = size > 1 ? 1 : 0; addr &= ~(size - 1); if (size == 4) addr |= 1; msg_push_bits(cmd, id, 2); msg_push_bits(cmd, opcode, opcode_bits); msg_push_bits(cmd, write ? 0 : 1, 1); msg_push_bits(cmd, addr, addr_bits); msg_push_bits(cmd, ds, 1); for (i = 0; write && i < size; i++) msg_push_bits(cmd, ((uint8_t *)data)[i], 8); msg_push_crc(cmd); } static void build_dpoll_command(struct fsi_gpio_msg *cmd, uint8_t slave_id) { cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, slave_id, 2); msg_push_bits(cmd, FSI_CMD_DPOLL, 3); msg_push_crc(cmd); } static void build_epoll_command(struct fsi_gpio_msg *cmd, uint8_t slave_id) { cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, slave_id, 2); msg_push_bits(cmd, FSI_CMD_EPOLL, 3); msg_push_crc(cmd); } static void build_term_command(struct fsi_gpio_msg *cmd, uint8_t slave_id) { cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, slave_id, 2); msg_push_bits(cmd, FSI_CMD_TERM, 6); msg_push_crc(cmd); } /* * Note: callers rely specifically on this returning -EAGAIN for * a CRC error detected in the response. Use other error code * for other situations. It will be converted to something else * higher up the stack before it reaches userspace. */ static int read_one_response(struct fsi_master_gpio *master, uint8_t data_size, struct fsi_gpio_msg *msgp, uint8_t *tagp) { struct fsi_gpio_msg msg; unsigned long flags; uint32_t crc; uint8_t tag; int i; local_irq_save(flags); /* wait for the start bit */ for (i = 0; i < FSI_MASTER_MTOE_COUNT; i++) { msg.bits = 0; msg.msg = 0; serial_in(master, &msg, 1); if (msg.msg) break; } if (i == FSI_MASTER_MTOE_COUNT) { dev_dbg(master->dev, "Master time out waiting for response\n"); local_irq_restore(flags); return -ETIMEDOUT; } msg.bits = 0; msg.msg = 0; /* Read slave ID & response tag */ serial_in(master, &msg, 4); tag = msg.msg & 0x3; /* If we have an ACK and we're expecting data, clock the data in too */ if (tag == FSI_RESP_ACK && data_size) serial_in(master, &msg, data_size * 8); /* read CRC */ serial_in(master, &msg, FSI_CRC_SIZE); local_irq_restore(flags); /* we have a whole message now; check CRC */ crc = crc4(0, 1, 1); crc = crc4(crc, msg.msg, msg.bits); if (crc) { /* Check if it's all 1's, that probably means the host is off */ if (((~msg.msg) & ((1ull << msg.bits) - 1)) == 0) return -ENODEV; dev_dbg(master->dev, "ERR response CRC msg: 0x%016llx (%d bits)\n", msg.msg, msg.bits); return -EAGAIN; } if (msgp) *msgp = msg; if (tagp) *tagp = tag; return 0; } static int issue_term(struct fsi_master_gpio *master, uint8_t slave) { struct fsi_gpio_msg cmd; unsigned long flags; uint8_t tag; int rc; build_term_command(&cmd, slave); local_irq_save(flags); serial_out(master, &cmd); echo_delay(master); local_irq_restore(flags); rc = read_one_response(master, 0, NULL, &tag); if (rc < 0) { dev_err(master->dev, "TERM failed; lost communication with slave\n"); return -EIO; } else if (tag != FSI_RESP_ACK) { dev_err(master->dev, "TERM failed; response %d\n", tag); return -EIO; } return 0; } static int poll_for_response(struct fsi_master_gpio *master, uint8_t slave, uint8_t size, void *data) { struct fsi_gpio_msg response, cmd; int busy_count = 0, rc, i; unsigned long flags; uint8_t tag; uint8_t *data_byte = data; int crc_err_retries = 0; retry: rc = read_one_response(master, size, &response, &tag); /* Handle retries on CRC errors */ if (rc == -EAGAIN) { /* Too many retries ? */ if (crc_err_retries++ > FSI_CRC_ERR_RETRIES) { /* * Pass it up as a -EIO otherwise upper level will retry * the whole command which isn't what we want here. */ rc = -EIO; goto fail; } dev_dbg(master->dev, "CRC error retry %d\n", crc_err_retries); trace_fsi_master_gpio_crc_rsp_error(master); build_epoll_command(&cmd, slave); local_irq_save(flags); clock_zeros(master, FSI_MASTER_EPOLL_CLOCKS); serial_out(master, &cmd); echo_delay(master); local_irq_restore(flags); goto retry; } else if (rc) goto fail; switch (tag) { case FSI_RESP_ACK: if (size && data) { uint64_t val = response.msg; /* clear crc & mask */ val >>= 4; val &= (1ull << (size * 8)) - 1; for (i = 0; i < size; i++) { data_byte[size-i-1] = val; val >>= 8; } } break; case FSI_RESP_BUSY: /* * Its necessary to clock slave before issuing * d-poll, not indicated in the hardware protocol * spec. < 20 clocks causes slave to hang, 21 ok. */ if (busy_count++ < FSI_MASTER_MAX_BUSY) { build_dpoll_command(&cmd, slave); local_irq_save(flags); clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS); serial_out(master, &cmd); echo_delay(master); local_irq_restore(flags); goto retry; } dev_warn(master->dev, "ERR slave is stuck in busy state, issuing TERM\n"); local_irq_save(flags); clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS); local_irq_restore(flags); issue_term(master, slave); rc = -EIO; break; case FSI_RESP_ERRA: dev_dbg(master->dev, "ERRA received: 0x%x\n", (int)response.msg); rc = -EIO; break; case FSI_RESP_ERRC: dev_dbg(master->dev, "ERRC received: 0x%x\n", (int)response.msg); trace_fsi_master_gpio_crc_cmd_error(master); rc = -EAGAIN; break; } if (busy_count > 0) trace_fsi_master_gpio_poll_response_busy(master, busy_count); fail: /* * tSendDelay clocks, avoids signal reflections when switching * from receive of response back to send of data. */ local_irq_save(flags); clock_zeros(master, master->t_send_delay); local_irq_restore(flags); return rc; } static int send_request(struct fsi_master_gpio *master, struct fsi_gpio_msg *cmd) { unsigned long flags; if (master->external_mode) return -EBUSY; local_irq_save(flags); serial_out(master, cmd); echo_delay(master); local_irq_restore(flags); return 0; } static int fsi_master_gpio_xfer(struct fsi_master_gpio *master, uint8_t slave, struct fsi_gpio_msg *cmd, size_t resp_len, void *resp) { int rc = -EAGAIN, retries = 0; while ((retries++) < FSI_CRC_ERR_RETRIES) { rc = send_request(master, cmd); if (rc) break; rc = poll_for_response(master, slave, resp_len, resp); if (rc != -EAGAIN) break; rc = -EIO; dev_warn(master->dev, "ECRC retry %d\n", retries); /* Pace it a bit before retry */ msleep(1); } return rc; } static int fsi_master_gpio_read(struct fsi_master *_master, int link, uint8_t id, uint32_t addr, void *val, size_t size) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); struct fsi_gpio_msg cmd; int rc; if (link != 0) return -ENODEV; mutex_lock(&master->cmd_lock); build_ar_command(master, &cmd, id, addr, size, NULL); rc = fsi_master_gpio_xfer(master, id, &cmd, size, val); last_address_update(master, id, rc == 0, addr); mutex_unlock(&master->cmd_lock); return rc; } static int fsi_master_gpio_write(struct fsi_master *_master, int link, uint8_t id, uint32_t addr, const void *val, size_t size) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); struct fsi_gpio_msg cmd; int rc; if (link != 0) return -ENODEV; mutex_lock(&master->cmd_lock); build_ar_command(master, &cmd, id, addr, size, val); rc = fsi_master_gpio_xfer(master, id, &cmd, 0, NULL); last_address_update(master, id, rc == 0, addr); mutex_unlock(&master->cmd_lock); return rc; } static int fsi_master_gpio_term(struct fsi_master *_master, int link, uint8_t id) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); struct fsi_gpio_msg cmd; int rc; if (link != 0) return -ENODEV; mutex_lock(&master->cmd_lock); build_term_command(&cmd, id); rc = fsi_master_gpio_xfer(master, id, &cmd, 0, NULL); last_address_update(master, id, false, 0); mutex_unlock(&master->cmd_lock); return rc; } static int fsi_master_gpio_break(struct fsi_master *_master, int link) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); unsigned long flags; if (link != 0) return -ENODEV; trace_fsi_master_gpio_break(master); mutex_lock(&master->cmd_lock); if (master->external_mode) { mutex_unlock(&master->cmd_lock); return -EBUSY; } local_irq_save(flags); set_sda_output(master, 1); sda_out(master, 1); clock_toggle(master, FSI_PRE_BREAK_CLOCKS); sda_out(master, 0); clock_toggle(master, FSI_BREAK_CLOCKS); echo_delay(master); sda_out(master, 1); clock_toggle(master, FSI_POST_BREAK_CLOCKS); local_irq_restore(flags); last_address_update(master, 0, false, 0); mutex_unlock(&master->cmd_lock); /* Wait for logic reset to take effect */ udelay(200); return 0; } static void fsi_master_gpio_init(struct fsi_master_gpio *master) { unsigned long flags; gpiod_direction_output(master->gpio_mux, 1); gpiod_direction_output(master->gpio_trans, 1); gpiod_direction_output(master->gpio_enable, 1); gpiod_direction_output(master->gpio_clk, 1); gpiod_direction_output(master->gpio_data, 1); /* todo: evaluate if clocks can be reduced */ local_irq_save(flags); clock_zeros(master, FSI_INIT_CLOCKS); local_irq_restore(flags); } static void fsi_master_gpio_init_external(struct fsi_master_gpio *master) { gpiod_direction_output(master->gpio_mux, 0); gpiod_direction_output(master->gpio_trans, 0); gpiod_direction_output(master->gpio_enable, 1); gpiod_direction_input(master->gpio_clk); gpiod_direction_input(master->gpio_data); } static int fsi_master_gpio_link_enable(struct fsi_master *_master, int link) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); int rc = -EBUSY; if (link != 0) return -ENODEV; mutex_lock(&master->cmd_lock); if (!master->external_mode) { gpiod_set_value(master->gpio_enable, 1); rc = 0; } mutex_unlock(&master->cmd_lock); return rc; } static int fsi_master_gpio_link_config(struct fsi_master *_master, int link, u8 t_send_delay, u8 t_echo_delay) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); if (link != 0) return -ENODEV; mutex_lock(&master->cmd_lock); master->t_send_delay = t_send_delay; master->t_echo_delay = t_echo_delay; mutex_unlock(&master->cmd_lock); return 0; } static ssize_t external_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fsi_master_gpio *master = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE - 1, "%u\n", master->external_mode ? 1 : 0); } static ssize_t external_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fsi_master_gpio *master = dev_get_drvdata(dev); unsigned long val; bool external_mode; int err; err = kstrtoul(buf, 0, &val); if (err) return err; external_mode = !!val; mutex_lock(&master->cmd_lock); if (external_mode == master->external_mode) { mutex_unlock(&master->cmd_lock); return count; } master->external_mode = external_mode; if (master->external_mode) fsi_master_gpio_init_external(master); else fsi_master_gpio_init(master); mutex_unlock(&master->cmd_lock); fsi_master_rescan(&master->master); return count; } static DEVICE_ATTR(external_mode, 0664, external_mode_show, external_mode_store); static void fsi_master_gpio_release(struct device *dev) { struct fsi_master_gpio *master = to_fsi_master_gpio(dev_to_fsi_master(dev)); of_node_put(dev_of_node(master->dev)); kfree(master); } static int fsi_master_gpio_probe(struct platform_device *pdev) { struct fsi_master_gpio *master; struct gpio_desc *gpio; int rc; master = kzalloc(sizeof(*master), GFP_KERNEL); if (!master) return -ENOMEM; master->dev = &pdev->dev; master->master.dev.parent = master->dev; master->master.dev.of_node = of_node_get(dev_of_node(master->dev)); master->master.dev.release = fsi_master_gpio_release; master->last_addr = LAST_ADDR_INVALID; gpio = devm_gpiod_get(&pdev->dev, "clock", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get clock gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_clk = gpio; gpio = devm_gpiod_get(&pdev->dev, "data", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get data gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_data = gpio; /* Optional GPIOs */ gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get trans gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_trans = gpio; gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get enable gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_enable = gpio; gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get mux gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_mux = gpio; /* * Check if GPIO block is slow enought that no extra delays * are necessary. This improves performance on ast2500 by * an order of magnitude. */ master->no_delays = device_property_present(&pdev->dev, "no-gpio-delays"); /* Default FSI command delays */ master->t_send_delay = FSI_SEND_DELAY_CLOCKS; master->t_echo_delay = FSI_ECHO_DELAY_CLOCKS; master->master.n_links = 1; master->master.flags = FSI_MASTER_FLAG_SWCLOCK; master->master.read = fsi_master_gpio_read; master->master.write = fsi_master_gpio_write; master->master.term = fsi_master_gpio_term; master->master.send_break = fsi_master_gpio_break; master->master.link_enable = fsi_master_gpio_link_enable; master->master.link_config = fsi_master_gpio_link_config; platform_set_drvdata(pdev, master); mutex_init(&master->cmd_lock); fsi_master_gpio_init(master); rc = device_create_file(&pdev->dev, &dev_attr_external_mode); if (rc) goto err_free; rc = fsi_master_register(&master->master); if (rc) { device_remove_file(&pdev->dev, &dev_attr_external_mode); put_device(&master->master.dev); return rc; } return 0; err_free: kfree(master); return rc; } static int fsi_master_gpio_remove(struct platform_device *pdev) { struct fsi_master_gpio *master = platform_get_drvdata(pdev); device_remove_file(&pdev->dev, &dev_attr_external_mode); fsi_master_unregister(&master->master); return 0; } static const struct of_device_id fsi_master_gpio_match[] = { { .compatible = "fsi-master-gpio" }, { }, }; static struct platform_driver fsi_master_gpio_driver = { .driver = { .name = "fsi-master-gpio", .of_match_table = fsi_master_gpio_match, }, .probe = fsi_master_gpio_probe, .remove = fsi_master_gpio_remove, }; module_platform_driver(fsi_master_gpio_driver); MODULE_LICENSE("GPL");