/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* To compile this assembly code: * * Navi1x: * cpp -DASIC_FAMILY=CHIP_NAVI10 cwsr_trap_handler_gfx10.asm -P -o nv1x.sp3 * sp3 nv1x.sp3 -hex nv1x.hex * * gfx10: * cpp -DASIC_FAMILY=CHIP_SIENNA_CICHLID cwsr_trap_handler_gfx10.asm -P -o gfx10.sp3 * sp3 gfx10.sp3 -hex gfx10.hex * * gfx11: * cpp -DASIC_FAMILY=CHIP_PLUM_BONITO cwsr_trap_handler_gfx10.asm -P -o gfx11.sp3 * sp3 gfx11.sp3 -hex gfx11.hex */ #define CHIP_NAVI10 26 #define CHIP_SIENNA_CICHLID 30 #define CHIP_PLUM_BONITO 36 #define NO_SQC_STORE (ASIC_FAMILY >= CHIP_SIENNA_CICHLID) #define HAVE_XNACK (ASIC_FAMILY < CHIP_SIENNA_CICHLID) #define HAVE_SENDMSG_RTN (ASIC_FAMILY >= CHIP_PLUM_BONITO) #define HAVE_BUFFER_LDS_LOAD (ASIC_FAMILY < CHIP_PLUM_BONITO) #define SW_SA_TRAP (ASIC_FAMILY >= CHIP_PLUM_BONITO) var SINGLE_STEP_MISSED_WORKAROUND = 1 //workaround for lost MODE.DEBUG_EN exception when SAVECTX raised var SQ_WAVE_STATUS_SPI_PRIO_MASK = 0x00000006 var SQ_WAVE_STATUS_HALT_MASK = 0x2000 var SQ_WAVE_STATUS_ECC_ERR_MASK = 0x20000 var SQ_WAVE_STATUS_TRAP_EN_SHIFT = 6 var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT = 12 var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE = 9 var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE = 8 var SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SHIFT = 24 var SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SIZE = 4 var SQ_WAVE_IB_STS2_WAVE64_SHIFT = 11 var SQ_WAVE_IB_STS2_WAVE64_SIZE = 1 #if ASIC_FAMILY < CHIP_PLUM_BONITO var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT = 8 #else var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT = 12 #endif var SQ_WAVE_TRAPSTS_SAVECTX_MASK = 0x400 var SQ_WAVE_TRAPSTS_EXCP_MASK = 0x1FF var SQ_WAVE_TRAPSTS_SAVECTX_SHIFT = 10 var SQ_WAVE_TRAPSTS_ADDR_WATCH_MASK = 0x80 var SQ_WAVE_TRAPSTS_ADDR_WATCH_SHIFT = 7 var SQ_WAVE_TRAPSTS_MEM_VIOL_MASK = 0x100 var SQ_WAVE_TRAPSTS_MEM_VIOL_SHIFT = 8 var SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK = 0x3FF var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT = 0x0 var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE = 10 var SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK = 0xFFFFF800 var SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT = 11 var SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE = 21 var SQ_WAVE_TRAPSTS_ILLEGAL_INST_MASK = 0x800 var SQ_WAVE_TRAPSTS_EXCP_HI_MASK = 0x7000 var SQ_WAVE_MODE_EXCP_EN_SHIFT = 12 var SQ_WAVE_MODE_EXCP_EN_ADDR_WATCH_SHIFT = 19 var SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT = 15 var SQ_WAVE_IB_STS_REPLAY_W64H_SHIFT = 25 var SQ_WAVE_IB_STS_REPLAY_W64H_MASK = 0x02000000 var SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK = 0x003F8000 var SQ_WAVE_MODE_DEBUG_EN_MASK = 0x800 // bits [31:24] unused by SPI debug data var TTMP11_SAVE_REPLAY_W64H_SHIFT = 31 var TTMP11_SAVE_REPLAY_W64H_MASK = 0x80000000 var TTMP11_SAVE_RCNT_FIRST_REPLAY_SHIFT = 24 var TTMP11_SAVE_RCNT_FIRST_REPLAY_MASK = 0x7F000000 var TTMP11_DEBUG_TRAP_ENABLED_SHIFT = 23 var TTMP11_DEBUG_TRAP_ENABLED_MASK = 0x800000 // SQ_SEL_X/Y/Z/W, BUF_NUM_FORMAT_FLOAT, (0 for MUBUF stride[17:14] // when ADD_TID_ENABLE and BUF_DATA_FORMAT_32 for MTBUF), ADD_TID_ENABLE var S_SAVE_BUF_RSRC_WORD1_STRIDE = 0x00040000 var S_SAVE_BUF_RSRC_WORD3_MISC = 0x10807FAC var S_SAVE_PC_HI_TRAP_ID_MASK = 0x00FF0000 var S_SAVE_PC_HI_HT_MASK = 0x01000000 var S_SAVE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000 var S_SAVE_SPI_INIT_FIRST_WAVE_SHIFT = 26 var S_SAVE_PC_HI_FIRST_WAVE_MASK = 0x80000000 var S_SAVE_PC_HI_FIRST_WAVE_SHIFT = 31 var s_sgpr_save_num = 108 var s_save_spi_init_lo = exec_lo var s_save_spi_init_hi = exec_hi var s_save_pc_lo = ttmp0 var s_save_pc_hi = ttmp1 var s_save_exec_lo = ttmp2 var s_save_exec_hi = ttmp3 var s_save_status = ttmp12 var s_save_trapsts = ttmp15 var s_save_xnack_mask = s_save_trapsts var s_wave_size = ttmp7 var s_save_buf_rsrc0 = ttmp8 var s_save_buf_rsrc1 = ttmp9 var s_save_buf_rsrc2 = ttmp10 var s_save_buf_rsrc3 = ttmp11 var s_save_mem_offset = ttmp4 var s_save_alloc_size = s_save_trapsts var s_save_tmp = ttmp14 var s_save_m0 = ttmp5 var s_save_ttmps_lo = s_save_tmp var s_save_ttmps_hi = s_save_trapsts var S_RESTORE_BUF_RSRC_WORD1_STRIDE = S_SAVE_BUF_RSRC_WORD1_STRIDE var S_RESTORE_BUF_RSRC_WORD3_MISC = S_SAVE_BUF_RSRC_WORD3_MISC var S_RESTORE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000 var S_RESTORE_SPI_INIT_FIRST_WAVE_SHIFT = 26 var S_WAVE_SIZE = 25 var s_restore_spi_init_lo = exec_lo var s_restore_spi_init_hi = exec_hi var s_restore_mem_offset = ttmp12 var s_restore_alloc_size = ttmp3 var s_restore_tmp = ttmp2 var s_restore_mem_offset_save = s_restore_tmp var s_restore_m0 = s_restore_alloc_size var s_restore_mode = ttmp7 var s_restore_flat_scratch = s_restore_tmp var s_restore_pc_lo = ttmp0 var s_restore_pc_hi = ttmp1 var s_restore_exec_lo = ttmp4 var s_restore_exec_hi = ttmp5 var s_restore_status = ttmp14 var s_restore_trapsts = ttmp15 var s_restore_xnack_mask = ttmp13 var s_restore_buf_rsrc0 = ttmp8 var s_restore_buf_rsrc1 = ttmp9 var s_restore_buf_rsrc2 = ttmp10 var s_restore_buf_rsrc3 = ttmp11 var s_restore_size = ttmp6 var s_restore_ttmps_lo = s_restore_tmp var s_restore_ttmps_hi = s_restore_alloc_size shader main asic(DEFAULT) type(CS) wave_size(32) s_branch L_SKIP_RESTORE //NOT restore. might be a regular trap or save L_JUMP_TO_RESTORE: s_branch L_RESTORE L_SKIP_RESTORE: s_getreg_b32 s_save_status, hwreg(HW_REG_STATUS) //save STATUS since we will change SCC // Clear SPI_PRIO: do not save with elevated priority. // Clear ECC_ERR: prevents SQC store and triggers FATAL_HALT if setreg'd. s_andn2_b32 s_save_status, s_save_status, SQ_WAVE_STATUS_SPI_PRIO_MASK|SQ_WAVE_STATUS_ECC_ERR_MASK s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS) #if SW_SA_TRAP // If ttmp1[30] is set then issue s_barrier to unblock dependent waves. s_bitcmp1_b32 s_save_pc_hi, 30 s_cbranch_scc0 L_TRAP_NO_BARRIER s_barrier L_TRAP_NO_BARRIER: // If ttmp1[31] is set then trap may occur early. // Spin wait until SAVECTX exception is raised. s_bitcmp1_b32 s_save_pc_hi, 31 s_cbranch_scc1 L_CHECK_SAVE #endif s_and_b32 ttmp2, s_save_status, SQ_WAVE_STATUS_HALT_MASK s_cbranch_scc0 L_NOT_HALTED L_HALTED: // Host trap may occur while wave is halted. s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_TRAP_ID_MASK s_cbranch_scc1 L_FETCH_2ND_TRAP L_CHECK_SAVE: s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_SAVECTX_MASK s_cbranch_scc1 L_SAVE // Wave is halted but neither host trap nor SAVECTX is raised. // Caused by instruction fetch memory violation. // Spin wait until context saved to prevent interrupt storm. s_sleep 0x10 s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS) s_branch L_CHECK_SAVE L_NOT_HALTED: // Let second-level handle non-SAVECTX exception or trap. // Any concurrent SAVECTX will be handled upon re-entry once halted. // Check non-maskable exceptions. memory_violation, illegal_instruction // and xnack_error exceptions always cause the wave to enter the trap // handler. s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_MEM_VIOL_MASK|SQ_WAVE_TRAPSTS_ILLEGAL_INST_MASK s_cbranch_scc1 L_FETCH_2ND_TRAP // Check for maskable exceptions in trapsts.excp and trapsts.excp_hi. // Maskable exceptions only cause the wave to enter the trap handler if // their respective bit in mode.excp_en is set. s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_EXCP_MASK|SQ_WAVE_TRAPSTS_EXCP_HI_MASK s_cbranch_scc0 L_CHECK_TRAP_ID s_and_b32 ttmp3, s_save_trapsts, SQ_WAVE_TRAPSTS_ADDR_WATCH_MASK|SQ_WAVE_TRAPSTS_EXCP_HI_MASK s_cbranch_scc0 L_NOT_ADDR_WATCH s_bitset1_b32 ttmp2, SQ_WAVE_TRAPSTS_ADDR_WATCH_SHIFT // Check all addr_watch[123] exceptions against excp_en.addr_watch L_NOT_ADDR_WATCH: s_getreg_b32 ttmp3, hwreg(HW_REG_MODE) s_lshl_b32 ttmp2, ttmp2, SQ_WAVE_MODE_EXCP_EN_SHIFT s_and_b32 ttmp2, ttmp2, ttmp3 s_cbranch_scc1 L_FETCH_2ND_TRAP L_CHECK_TRAP_ID: // Check trap_id != 0 s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_TRAP_ID_MASK s_cbranch_scc1 L_FETCH_2ND_TRAP if SINGLE_STEP_MISSED_WORKAROUND // Prioritize single step exception over context save. // Second-level trap will halt wave and RFE, re-entering for SAVECTX. s_getreg_b32 ttmp2, hwreg(HW_REG_MODE) s_and_b32 ttmp2, ttmp2, SQ_WAVE_MODE_DEBUG_EN_MASK s_cbranch_scc1 L_FETCH_2ND_TRAP end s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_SAVECTX_MASK s_cbranch_scc1 L_SAVE L_FETCH_2ND_TRAP: #if HAVE_XNACK save_and_clear_ib_sts(ttmp14, ttmp15) #endif // Read second-level TBA/TMA from first-level TMA and jump if available. // ttmp[2:5] and ttmp12 can be used (others hold SPI-initialized debug data) // ttmp12 holds SQ_WAVE_STATUS #if HAVE_SENDMSG_RTN s_sendmsg_rtn_b64 [ttmp14, ttmp15], sendmsg(MSG_RTN_GET_TMA) s_waitcnt lgkmcnt(0) #else s_getreg_b32 ttmp14, hwreg(HW_REG_SHADER_TMA_LO) s_getreg_b32 ttmp15, hwreg(HW_REG_SHADER_TMA_HI) #endif s_lshl_b64 [ttmp14, ttmp15], [ttmp14, ttmp15], 0x8 s_load_dword ttmp2, [ttmp14, ttmp15], 0x10 glc:1 // debug trap enabled flag s_waitcnt lgkmcnt(0) s_lshl_b32 ttmp2, ttmp2, TTMP11_DEBUG_TRAP_ENABLED_SHIFT s_andn2_b32 ttmp11, ttmp11, TTMP11_DEBUG_TRAP_ENABLED_MASK s_or_b32 ttmp11, ttmp11, ttmp2 s_load_dwordx2 [ttmp2, ttmp3], [ttmp14, ttmp15], 0x0 glc:1 // second-level TBA s_waitcnt lgkmcnt(0) s_load_dwordx2 [ttmp14, ttmp15], [ttmp14, ttmp15], 0x8 glc:1 // second-level TMA s_waitcnt lgkmcnt(0) s_and_b64 [ttmp2, ttmp3], [ttmp2, ttmp3], [ttmp2, ttmp3] s_cbranch_scc0 L_NO_NEXT_TRAP // second-level trap handler not been set s_setpc_b64 [ttmp2, ttmp3] // jump to second-level trap handler L_NO_NEXT_TRAP: // If not caused by trap then halt wave to prevent re-entry. s_and_b32 ttmp2, s_save_pc_hi, (S_SAVE_PC_HI_TRAP_ID_MASK|S_SAVE_PC_HI_HT_MASK) s_cbranch_scc1 L_TRAP_CASE s_or_b32 s_save_status, s_save_status, SQ_WAVE_STATUS_HALT_MASK // If the PC points to S_ENDPGM then context save will fail if STATUS.HALT is set. // Rewind the PC to prevent this from occurring. s_sub_u32 ttmp0, ttmp0, 0x8 s_subb_u32 ttmp1, ttmp1, 0x0 s_branch L_EXIT_TRAP L_TRAP_CASE: // Host trap will not cause trap re-entry. s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_HT_MASK s_cbranch_scc1 L_EXIT_TRAP // Advance past trap instruction to prevent re-entry. s_add_u32 ttmp0, ttmp0, 0x4 s_addc_u32 ttmp1, ttmp1, 0x0 L_EXIT_TRAP: s_and_b32 ttmp1, ttmp1, 0xFFFF #if HAVE_XNACK restore_ib_sts(ttmp14, ttmp15) #endif // Restore SQ_WAVE_STATUS. s_and_b64 exec, exec, exec // Restore STATUS.EXECZ, not writable by s_setreg_b32 s_and_b64 vcc, vcc, vcc // Restore STATUS.VCCZ, not writable by s_setreg_b32 s_setreg_b32 hwreg(HW_REG_STATUS), s_save_status s_rfe_b64 [ttmp0, ttmp1] L_SAVE: s_and_b32 s_save_pc_hi, s_save_pc_hi, 0x0000ffff //pc[47:32] s_mov_b32 s_save_tmp, 0 s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_SAVECTX_SHIFT, 1), s_save_tmp //clear saveCtx bit #if HAVE_XNACK save_and_clear_ib_sts(s_save_tmp, s_save_trapsts) #endif /* inform SPI the readiness and wait for SPI's go signal */ s_mov_b32 s_save_exec_lo, exec_lo //save EXEC and use EXEC for the go signal from SPI s_mov_b32 s_save_exec_hi, exec_hi s_mov_b64 exec, 0x0 //clear EXEC to get ready to receive #if HAVE_SENDMSG_RTN s_sendmsg_rtn_b64 [exec_lo, exec_hi], sendmsg(MSG_RTN_SAVE_WAVE) #else s_sendmsg sendmsg(MSG_SAVEWAVE) //send SPI a message and wait for SPI's write to EXEC #endif #if ASIC_FAMILY < CHIP_SIENNA_CICHLID L_SLEEP: // sleep 1 (64clk) is not enough for 8 waves per SIMD, which will cause // SQ hang, since the 7,8th wave could not get arbit to exec inst, while // other waves are stuck into the sleep-loop and waiting for wrexec!=0 s_sleep 0x2 s_cbranch_execz L_SLEEP #else s_waitcnt lgkmcnt(0) #endif // Save first_wave flag so we can clear high bits of save address. s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK s_lshl_b32 s_save_tmp, s_save_tmp, (S_SAVE_PC_HI_FIRST_WAVE_SHIFT - S_SAVE_SPI_INIT_FIRST_WAVE_SHIFT) s_or_b32 s_save_pc_hi, s_save_pc_hi, s_save_tmp #if NO_SQC_STORE // Trap temporaries must be saved via VGPR but all VGPRs are in use. // There is no ttmp space to hold the resource constant for VGPR save. // Save v0 by itself since it requires only two SGPRs. s_mov_b32 s_save_ttmps_lo, exec_lo s_and_b32 s_save_ttmps_hi, exec_hi, 0xFFFF s_mov_b32 exec_lo, 0xFFFFFFFF s_mov_b32 exec_hi, 0xFFFFFFFF global_store_dword_addtid v0, [s_save_ttmps_lo, s_save_ttmps_hi] slc:1 glc:1 v_mov_b32 v0, 0x0 s_mov_b32 exec_lo, s_save_ttmps_lo s_mov_b32 exec_hi, s_save_ttmps_hi #endif // Save trap temporaries 4-11, 13 initialized by SPI debug dispatch logic // ttmp SR memory offset : size(VGPR)+size(SVGPR)+size(SGPR)+0x40 get_wave_size(s_save_ttmps_hi) get_vgpr_size_bytes(s_save_ttmps_lo, s_save_ttmps_hi) get_svgpr_size_bytes(s_save_ttmps_hi) s_add_u32 s_save_ttmps_lo, s_save_ttmps_lo, s_save_ttmps_hi s_and_b32 s_save_ttmps_hi, s_save_spi_init_hi, 0xFFFF s_add_u32 s_save_ttmps_lo, s_save_ttmps_lo, get_sgpr_size_bytes() s_add_u32 s_save_ttmps_lo, s_save_ttmps_lo, s_save_spi_init_lo s_addc_u32 s_save_ttmps_hi, s_save_ttmps_hi, 0x0 #if NO_SQC_STORE v_writelane_b32 v0, ttmp4, 0x4 v_writelane_b32 v0, ttmp5, 0x5 v_writelane_b32 v0, ttmp6, 0x6 v_writelane_b32 v0, ttmp7, 0x7 v_writelane_b32 v0, ttmp8, 0x8 v_writelane_b32 v0, ttmp9, 0x9 v_writelane_b32 v0, ttmp10, 0xA v_writelane_b32 v0, ttmp11, 0xB v_writelane_b32 v0, ttmp13, 0xD v_writelane_b32 v0, exec_lo, 0xE v_writelane_b32 v0, exec_hi, 0xF s_mov_b32 exec_lo, 0x3FFF s_mov_b32 exec_hi, 0x0 global_store_dword_addtid v0, [s_save_ttmps_lo, s_save_ttmps_hi] inst_offset:0x40 slc:1 glc:1 v_readlane_b32 ttmp14, v0, 0xE v_readlane_b32 ttmp15, v0, 0xF s_mov_b32 exec_lo, ttmp14 s_mov_b32 exec_hi, ttmp15 #else s_store_dwordx4 [ttmp4, ttmp5, ttmp6, ttmp7], [s_save_ttmps_lo, s_save_ttmps_hi], 0x50 glc:1 s_store_dwordx4 [ttmp8, ttmp9, ttmp10, ttmp11], [s_save_ttmps_lo, s_save_ttmps_hi], 0x60 glc:1 s_store_dword ttmp13, [s_save_ttmps_lo, s_save_ttmps_hi], 0x74 glc:1 #endif /* setup Resource Contants */ s_mov_b32 s_save_buf_rsrc0, s_save_spi_init_lo //base_addr_lo s_and_b32 s_save_buf_rsrc1, s_save_spi_init_hi, 0x0000FFFF //base_addr_hi s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE s_mov_b32 s_save_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes) although not neccessarily inited s_mov_b32 s_save_buf_rsrc3, S_SAVE_BUF_RSRC_WORD3_MISC s_mov_b32 s_save_m0, m0 /* global mem offset */ s_mov_b32 s_save_mem_offset, 0x0 get_wave_size(s_wave_size) #if HAVE_XNACK // Save and clear vector XNACK state late to free up SGPRs. s_getreg_b32 s_save_xnack_mask, hwreg(HW_REG_SHADER_XNACK_MASK) s_setreg_imm32_b32 hwreg(HW_REG_SHADER_XNACK_MASK), 0x0 #endif /* save first 4 VGPRs, needed for SGPR save */ s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_cbranch_scc1 L_ENABLE_SAVE_4VGPR_EXEC_HI s_mov_b32 exec_hi, 0x00000000 s_branch L_SAVE_4VGPR_WAVE32 L_ENABLE_SAVE_4VGPR_EXEC_HI: s_mov_b32 exec_hi, 0xFFFFFFFF s_branch L_SAVE_4VGPR_WAVE64 L_SAVE_4VGPR_WAVE32: s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes // VGPR Allocated in 4-GPR granularity #if !NO_SQC_STORE buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 #endif buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128 buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128*2 buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128*3 s_branch L_SAVE_HWREG L_SAVE_4VGPR_WAVE64: s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes // VGPR Allocated in 4-GPR granularity #if !NO_SQC_STORE buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 #endif buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256 buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*2 buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*3 /* save HW registers */ L_SAVE_HWREG: // HWREG SR memory offset : size(VGPR)+size(SVGPR)+size(SGPR) get_vgpr_size_bytes(s_save_mem_offset, s_wave_size) get_svgpr_size_bytes(s_save_tmp) s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp s_add_u32 s_save_mem_offset, s_save_mem_offset, get_sgpr_size_bytes() s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes #if NO_SQC_STORE v_mov_b32 v0, 0x0 //Offset[31:0] from buffer resource v_mov_b32 v1, 0x0 //Offset[63:32] from buffer resource v_mov_b32 v2, 0x0 //Set of SGPRs for TCP store s_mov_b32 m0, 0x0 //Next lane of v2 to write to #endif write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset) write_hwreg_to_mem(s_save_pc_lo, s_save_buf_rsrc0, s_save_mem_offset) s_andn2_b32 s_save_tmp, s_save_pc_hi, S_SAVE_PC_HI_FIRST_WAVE_MASK write_hwreg_to_mem(s_save_tmp, s_save_buf_rsrc0, s_save_mem_offset) write_hwreg_to_mem(s_save_exec_lo, s_save_buf_rsrc0, s_save_mem_offset) write_hwreg_to_mem(s_save_exec_hi, s_save_buf_rsrc0, s_save_mem_offset) write_hwreg_to_mem(s_save_status, s_save_buf_rsrc0, s_save_mem_offset) s_getreg_b32 s_save_tmp, hwreg(HW_REG_TRAPSTS) write_hwreg_to_mem(s_save_tmp, s_save_buf_rsrc0, s_save_mem_offset) // Not used on Sienna_Cichlid but keep layout same for debugger. write_hwreg_to_mem(s_save_xnack_mask, s_save_buf_rsrc0, s_save_mem_offset) s_getreg_b32 s_save_m0, hwreg(HW_REG_MODE) write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset) s_getreg_b32 s_save_m0, hwreg(HW_REG_SHADER_FLAT_SCRATCH_LO) write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset) s_getreg_b32 s_save_m0, hwreg(HW_REG_SHADER_FLAT_SCRATCH_HI) write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset) #if NO_SQC_STORE // Write HWREGs with 16 VGPR lanes. TTMPs occupy space after this. s_mov_b32 exec_lo, 0xFFFF s_mov_b32 exec_hi, 0x0 buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 // Write SGPRs with 32 VGPR lanes. This works in wave32 and wave64 mode. s_mov_b32 exec_lo, 0xFFFFFFFF #endif /* save SGPRs */ // Save SGPR before LDS save, then the s0 to s4 can be used during LDS save... // SGPR SR memory offset : size(VGPR)+size(SVGPR) get_vgpr_size_bytes(s_save_mem_offset, s_wave_size) get_svgpr_size_bytes(s_save_tmp) s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes #if NO_SQC_STORE s_mov_b32 ttmp13, 0x0 //next VGPR lane to copy SGPR into #else // backup s_save_buf_rsrc0,1 to s_save_pc_lo/hi, since write_16sgpr_to_mem function will change the rsrc0 s_mov_b32 s_save_xnack_mask, s_save_buf_rsrc0 s_add_u32 s_save_buf_rsrc0, s_save_buf_rsrc0, s_save_mem_offset s_addc_u32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0 #endif s_mov_b32 m0, 0x0 //SGPR initial index value =0 s_nop 0x0 //Manually inserted wait states L_SAVE_SGPR_LOOP: // SGPR is allocated in 16 SGPR granularity s_movrels_b64 s0, s0 //s0 = s[0+m0], s1 = s[1+m0] s_movrels_b64 s2, s2 //s2 = s[2+m0], s3 = s[3+m0] s_movrels_b64 s4, s4 //s4 = s[4+m0], s5 = s[5+m0] s_movrels_b64 s6, s6 //s6 = s[6+m0], s7 = s[7+m0] s_movrels_b64 s8, s8 //s8 = s[8+m0], s9 = s[9+m0] s_movrels_b64 s10, s10 //s10 = s[10+m0], s11 = s[11+m0] s_movrels_b64 s12, s12 //s12 = s[12+m0], s13 = s[13+m0] s_movrels_b64 s14, s14 //s14 = s[14+m0], s15 = s[15+m0] write_16sgpr_to_mem(s0, s_save_buf_rsrc0, s_save_mem_offset) #if NO_SQC_STORE s_cmp_eq_u32 ttmp13, 0x20 //have 32 VGPR lanes filled? s_cbranch_scc0 L_SAVE_SGPR_SKIP_TCP_STORE buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 s_add_u32 s_save_mem_offset, s_save_mem_offset, 0x80 s_mov_b32 ttmp13, 0x0 v_mov_b32 v2, 0x0 L_SAVE_SGPR_SKIP_TCP_STORE: #endif s_add_u32 m0, m0, 16 //next sgpr index s_cmp_lt_u32 m0, 96 //scc = (m0 < first 96 SGPR) ? 1 : 0 s_cbranch_scc1 L_SAVE_SGPR_LOOP //first 96 SGPR save is complete? //save the rest 12 SGPR s_movrels_b64 s0, s0 //s0 = s[0+m0], s1 = s[1+m0] s_movrels_b64 s2, s2 //s2 = s[2+m0], s3 = s[3+m0] s_movrels_b64 s4, s4 //s4 = s[4+m0], s5 = s[5+m0] s_movrels_b64 s6, s6 //s6 = s[6+m0], s7 = s[7+m0] s_movrels_b64 s8, s8 //s8 = s[8+m0], s9 = s[9+m0] s_movrels_b64 s10, s10 //s10 = s[10+m0], s11 = s[11+m0] write_12sgpr_to_mem(s0, s_save_buf_rsrc0, s_save_mem_offset) #if NO_SQC_STORE buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 #else // restore s_save_buf_rsrc0,1 s_mov_b32 s_save_buf_rsrc0, s_save_xnack_mask #endif /* save LDS */ L_SAVE_LDS: // Change EXEC to all threads... s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_cbranch_scc1 L_ENABLE_SAVE_LDS_EXEC_HI s_mov_b32 exec_hi, 0x00000000 s_branch L_SAVE_LDS_NORMAL L_ENABLE_SAVE_LDS_EXEC_HI: s_mov_b32 exec_hi, 0xFFFFFFFF L_SAVE_LDS_NORMAL: s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) s_and_b32 s_save_alloc_size, s_save_alloc_size, 0xFFFFFFFF //lds_size is zero? s_cbranch_scc0 L_SAVE_LDS_DONE //no lds used? jump to L_SAVE_DONE s_barrier //LDS is used? wait for other waves in the same TG s_and_b32 s_save_tmp, s_save_pc_hi, S_SAVE_PC_HI_FIRST_WAVE_MASK s_cbranch_scc0 L_SAVE_LDS_DONE // first wave do LDS save; s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 6 //LDS size in dwords = lds_size * 64dw s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //LDS size in bytes s_mov_b32 s_save_buf_rsrc2, s_save_alloc_size //NUM_RECORDS in bytes // LDS at offset: size(VGPR)+size(SVGPR)+SIZE(SGPR)+SIZE(HWREG) // get_vgpr_size_bytes(s_save_mem_offset, s_wave_size) get_svgpr_size_bytes(s_save_tmp) s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp s_add_u32 s_save_mem_offset, s_save_mem_offset, get_sgpr_size_bytes() s_add_u32 s_save_mem_offset, s_save_mem_offset, get_hwreg_size_bytes() s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes //load 0~63*4(byte address) to vgpr v0 v_mbcnt_lo_u32_b32 v0, -1, 0 v_mbcnt_hi_u32_b32 v0, -1, v0 v_mul_u32_u24 v0, 4, v0 s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_mov_b32 m0, 0x0 s_cbranch_scc1 L_SAVE_LDS_W64 L_SAVE_LDS_W32: s_mov_b32 s3, 128 s_nop 0 s_nop 0 s_nop 0 L_SAVE_LDS_LOOP_W32: ds_read_b32 v1, v0 s_waitcnt 0 buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 s_add_u32 m0, m0, s3 //every buffer_store_lds does 256 bytes s_add_u32 s_save_mem_offset, s_save_mem_offset, s3 v_add_nc_u32 v0, v0, 128 //mem offset increased by 128 bytes s_cmp_lt_u32 m0, s_save_alloc_size //scc=(m0 < s_save_alloc_size) ? 1 : 0 s_cbranch_scc1 L_SAVE_LDS_LOOP_W32 //LDS save is complete? s_branch L_SAVE_LDS_DONE L_SAVE_LDS_W64: s_mov_b32 s3, 256 s_nop 0 s_nop 0 s_nop 0 L_SAVE_LDS_LOOP_W64: ds_read_b32 v1, v0 s_waitcnt 0 buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 s_add_u32 m0, m0, s3 //every buffer_store_lds does 256 bytes s_add_u32 s_save_mem_offset, s_save_mem_offset, s3 v_add_nc_u32 v0, v0, 256 //mem offset increased by 256 bytes s_cmp_lt_u32 m0, s_save_alloc_size //scc=(m0 < s_save_alloc_size) ? 1 : 0 s_cbranch_scc1 L_SAVE_LDS_LOOP_W64 //LDS save is complete? L_SAVE_LDS_DONE: /* save VGPRs - set the Rest VGPRs */ L_SAVE_VGPR: // VGPR SR memory offset: 0 s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_cbranch_scc1 L_ENABLE_SAVE_VGPR_EXEC_HI s_mov_b32 s_save_mem_offset, (0+128*4) // for the rest VGPRs s_mov_b32 exec_hi, 0x00000000 s_branch L_SAVE_VGPR_NORMAL L_ENABLE_SAVE_VGPR_EXEC_HI: s_mov_b32 s_save_mem_offset, (0+256*4) // for the rest VGPRs s_mov_b32 exec_hi, 0xFFFFFFFF L_SAVE_VGPR_NORMAL: s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) s_add_u32 s_save_alloc_size, s_save_alloc_size, 1 s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //Number of VGPRs = (vgpr_size + 1) * 4 (non-zero value) //determine it is wave32 or wave64 s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_cbranch_scc1 L_SAVE_VGPR_WAVE64 s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes // VGPR Allocated in 4-GPR granularity // VGPR store using dw burst s_mov_b32 m0, 0x4 //VGPR initial index value =4 s_cmp_lt_u32 m0, s_save_alloc_size s_cbranch_scc0 L_SAVE_VGPR_END L_SAVE_VGPR_W32_LOOP: v_movrels_b32 v0, v0 //v0 = v[0+m0] v_movrels_b32 v1, v1 //v1 = v[1+m0] v_movrels_b32 v2, v2 //v2 = v[2+m0] v_movrels_b32 v3, v3 //v3 = v[3+m0] buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128 buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128*2 buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128*3 s_add_u32 m0, m0, 4 //next vgpr index s_add_u32 s_save_mem_offset, s_save_mem_offset, 128*4 //every buffer_store_dword does 128 bytes s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0 s_cbranch_scc1 L_SAVE_VGPR_W32_LOOP //VGPR save is complete? s_branch L_SAVE_VGPR_END L_SAVE_VGPR_WAVE64: s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes // VGPR store using dw burst s_mov_b32 m0, 0x4 //VGPR initial index value =4 s_cmp_lt_u32 m0, s_save_alloc_size s_cbranch_scc0 L_SAVE_SHARED_VGPR L_SAVE_VGPR_W64_LOOP: v_movrels_b32 v0, v0 //v0 = v[0+m0] v_movrels_b32 v1, v1 //v1 = v[1+m0] v_movrels_b32 v2, v2 //v2 = v[2+m0] v_movrels_b32 v3, v3 //v3 = v[3+m0] buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256 buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*2 buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*3 s_add_u32 m0, m0, 4 //next vgpr index s_add_u32 s_save_mem_offset, s_save_mem_offset, 256*4 //every buffer_store_dword does 256 bytes s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0 s_cbranch_scc1 L_SAVE_VGPR_W64_LOOP //VGPR save is complete? L_SAVE_SHARED_VGPR: //Below part will be the save shared vgpr part (new for gfx10) s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SIZE) s_and_b32 s_save_alloc_size, s_save_alloc_size, 0xFFFFFFFF //shared_vgpr_size is zero? s_cbranch_scc0 L_SAVE_VGPR_END //no shared_vgpr used? jump to L_SAVE_LDS s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 3 //Number of SHARED_VGPRs = shared_vgpr_size * 8 (non-zero value) //m0 now has the value of normal vgpr count, just add the m0 with shared_vgpr count to get the total count. //save shared_vgpr will start from the index of m0 s_add_u32 s_save_alloc_size, s_save_alloc_size, m0 s_mov_b32 exec_lo, 0xFFFFFFFF s_mov_b32 exec_hi, 0x00000000 L_SAVE_SHARED_VGPR_WAVE64_LOOP: v_movrels_b32 v0, v0 //v0 = v[0+m0] buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 s_add_u32 m0, m0, 1 //next vgpr index s_add_u32 s_save_mem_offset, s_save_mem_offset, 128 s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0 s_cbranch_scc1 L_SAVE_SHARED_VGPR_WAVE64_LOOP //SHARED_VGPR save is complete? L_SAVE_VGPR_END: s_branch L_END_PGM L_RESTORE: /* Setup Resource Contants */ s_mov_b32 s_restore_buf_rsrc0, s_restore_spi_init_lo //base_addr_lo s_and_b32 s_restore_buf_rsrc1, s_restore_spi_init_hi, 0x0000FFFF //base_addr_hi s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, S_RESTORE_BUF_RSRC_WORD1_STRIDE s_mov_b32 s_restore_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes) s_mov_b32 s_restore_buf_rsrc3, S_RESTORE_BUF_RSRC_WORD3_MISC //determine it is wave32 or wave64 get_wave_size(s_restore_size) s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_FIRST_WAVE_MASK s_cbranch_scc0 L_RESTORE_VGPR /* restore LDS */ L_RESTORE_LDS: s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on s_lshr_b32 m0, s_restore_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_cbranch_scc1 L_ENABLE_RESTORE_LDS_EXEC_HI s_mov_b32 exec_hi, 0x00000000 s_branch L_RESTORE_LDS_NORMAL L_ENABLE_RESTORE_LDS_EXEC_HI: s_mov_b32 exec_hi, 0xFFFFFFFF L_RESTORE_LDS_NORMAL: s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) s_and_b32 s_restore_alloc_size, s_restore_alloc_size, 0xFFFFFFFF //lds_size is zero? s_cbranch_scc0 L_RESTORE_VGPR //no lds used? jump to L_RESTORE_VGPR s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 6 //LDS size in dwords = lds_size * 64dw s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //LDS size in bytes s_mov_b32 s_restore_buf_rsrc2, s_restore_alloc_size //NUM_RECORDS in bytes // LDS at offset: size(VGPR)+size(SVGPR)+SIZE(SGPR)+SIZE(HWREG) // get_vgpr_size_bytes(s_restore_mem_offset, s_restore_size) get_svgpr_size_bytes(s_restore_tmp) s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_sgpr_size_bytes() s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_hwreg_size_bytes() s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes s_lshr_b32 m0, s_restore_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_mov_b32 m0, 0x0 s_cbranch_scc1 L_RESTORE_LDS_LOOP_W64 L_RESTORE_LDS_LOOP_W32: #if HAVE_BUFFER_LDS_LOAD buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 // first 64DW #else buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset s_waitcnt vmcnt(0) ds_store_addtid_b32 v0 #endif s_add_u32 m0, m0, 128 // 128 DW s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 128 //mem offset increased by 128DW s_cmp_lt_u32 m0, s_restore_alloc_size //scc=(m0 < s_restore_alloc_size) ? 1 : 0 s_cbranch_scc1 L_RESTORE_LDS_LOOP_W32 //LDS restore is complete? s_branch L_RESTORE_VGPR L_RESTORE_LDS_LOOP_W64: #if HAVE_BUFFER_LDS_LOAD buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 // first 64DW #else buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset s_waitcnt vmcnt(0) ds_store_addtid_b32 v0 #endif s_add_u32 m0, m0, 256 // 256 DW s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256 //mem offset increased by 256DW s_cmp_lt_u32 m0, s_restore_alloc_size //scc=(m0 < s_restore_alloc_size) ? 1 : 0 s_cbranch_scc1 L_RESTORE_LDS_LOOP_W64 //LDS restore is complete? /* restore VGPRs */ L_RESTORE_VGPR: // VGPR SR memory offset : 0 s_mov_b32 s_restore_mem_offset, 0x0 s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on s_lshr_b32 m0, s_restore_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_cbranch_scc1 L_ENABLE_RESTORE_VGPR_EXEC_HI s_mov_b32 exec_hi, 0x00000000 s_branch L_RESTORE_VGPR_NORMAL L_ENABLE_RESTORE_VGPR_EXEC_HI: s_mov_b32 exec_hi, 0xFFFFFFFF L_RESTORE_VGPR_NORMAL: s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 1 s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //Number of VGPRs = (vgpr_size + 1) * 4 (non-zero value) //determine it is wave32 or wave64 s_lshr_b32 m0, s_restore_size, S_WAVE_SIZE s_and_b32 m0, m0, 1 s_cmp_eq_u32 m0, 1 s_cbranch_scc1 L_RESTORE_VGPR_WAVE64 s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes // VGPR load using dw burst s_mov_b32 s_restore_mem_offset_save, s_restore_mem_offset // restore start with v1, v0 will be the last s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 128*4 s_mov_b32 m0, 4 //VGPR initial index value = 4 s_cmp_lt_u32 m0, s_restore_alloc_size s_cbranch_scc0 L_RESTORE_SGPR L_RESTORE_VGPR_WAVE32_LOOP: buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:128 buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:128*2 buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:128*3 s_waitcnt vmcnt(0) v_movreld_b32 v0, v0 //v[0+m0] = v0 v_movreld_b32 v1, v1 v_movreld_b32 v2, v2 v_movreld_b32 v3, v3 s_add_u32 m0, m0, 4 //next vgpr index s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 128*4 //every buffer_load_dword does 128 bytes s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0 s_cbranch_scc1 L_RESTORE_VGPR_WAVE32_LOOP //VGPR restore (except v0) is complete? /* VGPR restore on v0 */ buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:128 buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:128*2 buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:128*3 s_waitcnt vmcnt(0) s_branch L_RESTORE_SGPR L_RESTORE_VGPR_WAVE64: s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes // VGPR load using dw burst s_mov_b32 s_restore_mem_offset_save, s_restore_mem_offset // restore start with v4, v0 will be the last s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4 s_mov_b32 m0, 4 //VGPR initial index value = 4 s_cmp_lt_u32 m0, s_restore_alloc_size s_cbranch_scc0 L_RESTORE_SHARED_VGPR L_RESTORE_VGPR_WAVE64_LOOP: buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256 buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256*2 buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256*3 s_waitcnt vmcnt(0) v_movreld_b32 v0, v0 //v[0+m0] = v0 v_movreld_b32 v1, v1 v_movreld_b32 v2, v2 v_movreld_b32 v3, v3 s_add_u32 m0, m0, 4 //next vgpr index s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4 //every buffer_load_dword does 256 bytes s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0 s_cbranch_scc1 L_RESTORE_VGPR_WAVE64_LOOP //VGPR restore (except v0) is complete? L_RESTORE_SHARED_VGPR: //Below part will be the restore shared vgpr part (new for gfx10) s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SIZE) //shared_vgpr_size s_and_b32 s_restore_alloc_size, s_restore_alloc_size, 0xFFFFFFFF //shared_vgpr_size is zero? s_cbranch_scc0 L_RESTORE_V0 //no shared_vgpr used? s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 3 //Number of SHARED_VGPRs = shared_vgpr_size * 8 (non-zero value) //m0 now has the value of normal vgpr count, just add the m0 with shared_vgpr count to get the total count. //restore shared_vgpr will start from the index of m0 s_add_u32 s_restore_alloc_size, s_restore_alloc_size, m0 s_mov_b32 exec_lo, 0xFFFFFFFF s_mov_b32 exec_hi, 0x00000000 L_RESTORE_SHARED_VGPR_WAVE64_LOOP: buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 s_waitcnt vmcnt(0) v_movreld_b32 v0, v0 //v[0+m0] = v0 s_add_u32 m0, m0, 1 //next vgpr index s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 128 s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0 s_cbranch_scc1 L_RESTORE_SHARED_VGPR_WAVE64_LOOP //VGPR restore (except v0) is complete? s_mov_b32 exec_hi, 0xFFFFFFFF //restore back exec_hi before restoring V0!! /* VGPR restore on v0 */ L_RESTORE_V0: buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256 buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256*2 buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256*3 s_waitcnt vmcnt(0) /* restore SGPRs */ //will be 2+8+16*6 // SGPR SR memory offset : size(VGPR)+size(SVGPR) L_RESTORE_SGPR: get_vgpr_size_bytes(s_restore_mem_offset, s_restore_size) get_svgpr_size_bytes(s_restore_tmp) s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_sgpr_size_bytes() s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 20*4 //s108~s127 is not saved s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes s_mov_b32 m0, s_sgpr_save_num read_4sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset) s_waitcnt lgkmcnt(0) s_sub_u32 m0, m0, 4 // Restore from S[0] to S[104] s_nop 0 // hazard SALU M0=> S_MOVREL s_movreld_b64 s0, s0 //s[0+m0] = s0 s_movreld_b64 s2, s2 read_8sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset) s_waitcnt lgkmcnt(0) s_sub_u32 m0, m0, 8 // Restore from S[0] to S[96] s_nop 0 // hazard SALU M0=> S_MOVREL s_movreld_b64 s0, s0 //s[0+m0] = s0 s_movreld_b64 s2, s2 s_movreld_b64 s4, s4 s_movreld_b64 s6, s6 L_RESTORE_SGPR_LOOP: read_16sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset) s_waitcnt lgkmcnt(0) s_sub_u32 m0, m0, 16 // Restore from S[n] to S[0] s_nop 0 // hazard SALU M0=> S_MOVREL s_movreld_b64 s0, s0 //s[0+m0] = s0 s_movreld_b64 s2, s2 s_movreld_b64 s4, s4 s_movreld_b64 s6, s6 s_movreld_b64 s8, s8 s_movreld_b64 s10, s10 s_movreld_b64 s12, s12 s_movreld_b64 s14, s14 s_cmp_eq_u32 m0, 0 //scc = (m0 < s_sgpr_save_num) ? 1 : 0 s_cbranch_scc0 L_RESTORE_SGPR_LOOP // s_barrier with MODE.DEBUG_EN=1, STATUS.PRIV=1 incorrectly asserts debug exception. // Clear DEBUG_EN before and restore MODE after the barrier. s_setreg_imm32_b32 hwreg(HW_REG_MODE), 0 s_barrier //barrier to ensure the readiness of LDS before access attemps from any other wave in the same TG /* restore HW registers */ L_RESTORE_HWREG: // HWREG SR memory offset : size(VGPR)+size(SVGPR)+size(SGPR) get_vgpr_size_bytes(s_restore_mem_offset, s_restore_size) get_svgpr_size_bytes(s_restore_tmp) s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_sgpr_size_bytes() s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes read_hwreg_from_mem(s_restore_m0, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_pc_lo, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_pc_hi, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_exec_lo, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_exec_hi, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_status, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_trapsts, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_xnack_mask, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_mode, s_restore_buf_rsrc0, s_restore_mem_offset) read_hwreg_from_mem(s_restore_flat_scratch, s_restore_buf_rsrc0, s_restore_mem_offset) s_waitcnt lgkmcnt(0) s_setreg_b32 hwreg(HW_REG_SHADER_FLAT_SCRATCH_LO), s_restore_flat_scratch read_hwreg_from_mem(s_restore_flat_scratch, s_restore_buf_rsrc0, s_restore_mem_offset) s_waitcnt lgkmcnt(0) //from now on, it is safe to restore STATUS and IB_STS s_setreg_b32 hwreg(HW_REG_SHADER_FLAT_SCRATCH_HI), s_restore_flat_scratch s_mov_b32 m0, s_restore_m0 s_mov_b32 exec_lo, s_restore_exec_lo s_mov_b32 exec_hi, s_restore_exec_hi s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK, s_restore_trapsts s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE), s_restore_m0 #if HAVE_XNACK s_setreg_b32 hwreg(HW_REG_SHADER_XNACK_MASK), s_restore_xnack_mask #endif s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK, s_restore_trapsts s_lshr_b32 s_restore_m0, s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE), s_restore_m0 s_setreg_b32 hwreg(HW_REG_MODE), s_restore_mode // Restore trap temporaries 4-11, 13 initialized by SPI debug dispatch logic // ttmp SR memory offset : size(VGPR)+size(SVGPR)+size(SGPR)+0x40 get_vgpr_size_bytes(s_restore_ttmps_lo, s_restore_size) get_svgpr_size_bytes(s_restore_ttmps_hi) s_add_u32 s_restore_ttmps_lo, s_restore_ttmps_lo, s_restore_ttmps_hi s_add_u32 s_restore_ttmps_lo, s_restore_ttmps_lo, get_sgpr_size_bytes() s_add_u32 s_restore_ttmps_lo, s_restore_ttmps_lo, s_restore_buf_rsrc0 s_addc_u32 s_restore_ttmps_hi, s_restore_buf_rsrc1, 0x0 s_and_b32 s_restore_ttmps_hi, s_restore_ttmps_hi, 0xFFFF s_load_dwordx4 [ttmp4, ttmp5, ttmp6, ttmp7], [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x50 glc:1 s_load_dwordx4 [ttmp8, ttmp9, ttmp10, ttmp11], [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x60 glc:1 s_load_dword ttmp13, [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x74 glc:1 s_waitcnt lgkmcnt(0) #if HAVE_XNACK restore_ib_sts(s_restore_tmp, s_restore_m0) #endif s_and_b32 s_restore_pc_hi, s_restore_pc_hi, 0x0000ffff //pc[47:32] //Do it here in order not to affect STATUS s_and_b64 exec, exec, exec // Restore STATUS.EXECZ, not writable by s_setreg_b32 s_and_b64 vcc, vcc, vcc // Restore STATUS.VCCZ, not writable by s_setreg_b32 #if SW_SA_TRAP // If traps are enabled then return to the shader with PRIV=0. // Otherwise retain PRIV=1 for subsequent context save requests. s_getreg_b32 s_restore_tmp, hwreg(HW_REG_STATUS) s_bitcmp1_b32 s_restore_tmp, SQ_WAVE_STATUS_TRAP_EN_SHIFT s_cbranch_scc1 L_RETURN_WITHOUT_PRIV s_setreg_b32 hwreg(HW_REG_STATUS), s_restore_status // SCC is included, which is changed by previous salu s_setpc_b64 [s_restore_pc_lo, s_restore_pc_hi] L_RETURN_WITHOUT_PRIV: #endif s_setreg_b32 hwreg(HW_REG_STATUS), s_restore_status // SCC is included, which is changed by previous salu s_rfe_b64 s_restore_pc_lo //Return to the main shader program and resume execution L_END_PGM: s_endpgm end function write_hwreg_to_mem(s, s_rsrc, s_mem_offset) #if NO_SQC_STORE // Copy into VGPR for later TCP store. v_writelane_b32 v2, s, m0 s_add_u32 m0, m0, 0x1 #else s_mov_b32 exec_lo, m0 s_mov_b32 m0, s_mem_offset s_buffer_store_dword s, s_rsrc, m0 glc:1 s_add_u32 s_mem_offset, s_mem_offset, 4 s_mov_b32 m0, exec_lo #endif end function write_16sgpr_to_mem(s, s_rsrc, s_mem_offset) #if NO_SQC_STORE // Copy into VGPR for later TCP store. for var sgpr_idx = 0; sgpr_idx < 16; sgpr_idx ++ v_writelane_b32 v2, s[sgpr_idx], ttmp13 s_add_u32 ttmp13, ttmp13, 0x1 end #else s_buffer_store_dwordx4 s[0], s_rsrc, 0 glc:1 s_buffer_store_dwordx4 s[4], s_rsrc, 16 glc:1 s_buffer_store_dwordx4 s[8], s_rsrc, 32 glc:1 s_buffer_store_dwordx4 s[12], s_rsrc, 48 glc:1 s_add_u32 s_rsrc[0], s_rsrc[0], 4*16 s_addc_u32 s_rsrc[1], s_rsrc[1], 0x0 #endif end function write_12sgpr_to_mem(s, s_rsrc, s_mem_offset) #if NO_SQC_STORE // Copy into VGPR for later TCP store. for var sgpr_idx = 0; sgpr_idx < 12; sgpr_idx ++ v_writelane_b32 v2, s[sgpr_idx], ttmp13 s_add_u32 ttmp13, ttmp13, 0x1 end #else s_buffer_store_dwordx4 s[0], s_rsrc, 0 glc:1 s_buffer_store_dwordx4 s[4], s_rsrc, 16 glc:1 s_buffer_store_dwordx4 s[8], s_rsrc, 32 glc:1 s_add_u32 s_rsrc[0], s_rsrc[0], 4*12 s_addc_u32 s_rsrc[1], s_rsrc[1], 0x0 #endif end function read_hwreg_from_mem(s, s_rsrc, s_mem_offset) s_buffer_load_dword s, s_rsrc, s_mem_offset glc:1 s_add_u32 s_mem_offset, s_mem_offset, 4 end function read_16sgpr_from_mem(s, s_rsrc, s_mem_offset) s_sub_u32 s_mem_offset, s_mem_offset, 4*16 s_buffer_load_dwordx16 s, s_rsrc, s_mem_offset glc:1 end function read_8sgpr_from_mem(s, s_rsrc, s_mem_offset) s_sub_u32 s_mem_offset, s_mem_offset, 4*8 s_buffer_load_dwordx8 s, s_rsrc, s_mem_offset glc:1 end function read_4sgpr_from_mem(s, s_rsrc, s_mem_offset) s_sub_u32 s_mem_offset, s_mem_offset, 4*4 s_buffer_load_dwordx4 s, s_rsrc, s_mem_offset glc:1 end function get_lds_size_bytes(s_lds_size_byte) s_getreg_b32 s_lds_size_byte, hwreg(HW_REG_LDS_ALLOC, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) s_lshl_b32 s_lds_size_byte, s_lds_size_byte, 8 //LDS size in dwords = lds_size * 64 *4Bytes // granularity 64DW end function get_vgpr_size_bytes(s_vgpr_size_byte, s_size) s_getreg_b32 s_vgpr_size_byte, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) s_add_u32 s_vgpr_size_byte, s_vgpr_size_byte, 1 s_bitcmp1_b32 s_size, S_WAVE_SIZE s_cbranch_scc1 L_ENABLE_SHIFT_W64 s_lshl_b32 s_vgpr_size_byte, s_vgpr_size_byte, (2+7) //Number of VGPRs = (vgpr_size + 1) * 4 * 32 * 4 (non-zero value) s_branch L_SHIFT_DONE L_ENABLE_SHIFT_W64: s_lshl_b32 s_vgpr_size_byte, s_vgpr_size_byte, (2+8) //Number of VGPRs = (vgpr_size + 1) * 4 * 64 * 4 (non-zero value) L_SHIFT_DONE: end function get_svgpr_size_bytes(s_svgpr_size_byte) s_getreg_b32 s_svgpr_size_byte, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SIZE) s_lshl_b32 s_svgpr_size_byte, s_svgpr_size_byte, (3+7) end function get_sgpr_size_bytes return 512 end function get_hwreg_size_bytes return 128 end function get_wave_size(s_reg) s_getreg_b32 s_reg, hwreg(HW_REG_IB_STS2,SQ_WAVE_IB_STS2_WAVE64_SHIFT,SQ_WAVE_IB_STS2_WAVE64_SIZE) s_lshl_b32 s_reg, s_reg, S_WAVE_SIZE end function save_and_clear_ib_sts(tmp1, tmp2) // Preserve and clear scalar XNACK state before issuing scalar loads. // Save IB_STS.REPLAY_W64H[25], RCNT[21:16], FIRST_REPLAY[15] into // unused space ttmp11[31:24]. s_andn2_b32 ttmp11, ttmp11, (TTMP11_SAVE_REPLAY_W64H_MASK | TTMP11_SAVE_RCNT_FIRST_REPLAY_MASK) s_getreg_b32 tmp1, hwreg(HW_REG_IB_STS) s_and_b32 tmp2, tmp1, SQ_WAVE_IB_STS_REPLAY_W64H_MASK s_lshl_b32 tmp2, tmp2, (TTMP11_SAVE_REPLAY_W64H_SHIFT - SQ_WAVE_IB_STS_REPLAY_W64H_SHIFT) s_or_b32 ttmp11, ttmp11, tmp2 s_and_b32 tmp2, tmp1, SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK s_lshl_b32 tmp2, tmp2, (TTMP11_SAVE_RCNT_FIRST_REPLAY_SHIFT - SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT) s_or_b32 ttmp11, ttmp11, tmp2 s_andn2_b32 tmp1, tmp1, (SQ_WAVE_IB_STS_REPLAY_W64H_MASK | SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK) s_setreg_b32 hwreg(HW_REG_IB_STS), tmp1 end function restore_ib_sts(tmp1, tmp2) s_lshr_b32 tmp1, ttmp11, (TTMP11_SAVE_RCNT_FIRST_REPLAY_SHIFT - SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT) s_and_b32 tmp2, tmp1, SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK s_lshr_b32 tmp1, ttmp11, (TTMP11_SAVE_REPLAY_W64H_SHIFT - SQ_WAVE_IB_STS_REPLAY_W64H_SHIFT) s_and_b32 tmp1, tmp1, SQ_WAVE_IB_STS_REPLAY_W64H_MASK s_or_b32 tmp1, tmp1, tmp2 s_setreg_b32 hwreg(HW_REG_IB_STS), tmp1 end