/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" /* * Pre-requisites: headers required by header of this unit */ #include "include/i2caux_interface.h" #include "../engine.h" #include "../i2c_engine.h" #include "../i2c_hw_engine.h" #include "../i2c_generic_hw_engine.h" /* * Header of this unit */ #include "i2c_hw_engine_dce80.h" /* * Post-requisites: headers required by this unit */ #include "dce/dce_8_0_d.h" #include "dce/dce_8_0_sh_mask.h" /* * This unit */ enum dc_i2c_status { DC_I2C_STATUS__DC_I2C_STATUS_IDLE, DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_SW, DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_HW }; enum dc_i2c_arbitration { DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_NORMAL, DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_HIGH }; enum { /* No timeout in HW * (timeout implemented in SW by querying status) */ I2C_SETUP_TIME_LIMIT = 255, I2C_HW_BUFFER_SIZE = 144 }; /* * @brief * Cast 'struct i2c_hw_engine *' * to 'struct i2c_hw_engine_dce80 *' */ #define FROM_I2C_HW_ENGINE(ptr) \ container_of((ptr), struct i2c_hw_engine_dce80, base) /* * @brief * Cast pointer to 'struct i2c_engine *' * to pointer to 'struct i2c_hw_engine_dce80 *' */ #define FROM_I2C_ENGINE(ptr) \ FROM_I2C_HW_ENGINE(container_of((ptr), struct i2c_hw_engine, base)) /* * @brief * Cast pointer to 'struct engine *' * to 'pointer to struct i2c_hw_engine_dce80 *' */ #define FROM_ENGINE(ptr) \ FROM_I2C_ENGINE(container_of((ptr), struct i2c_engine, base)) static void disable_i2c_hw_engine( struct i2c_hw_engine_dce80 *engine) { const uint32_t addr = engine->addr.DC_I2C_DDCX_SETUP; uint32_t value = 0; struct dc_context *ctx = NULL; ctx = engine->base.base.base.ctx; value = dm_read_reg(ctx, addr); set_reg_field_value( value, 0, DC_I2C_DDC1_SETUP, DC_I2C_DDC1_ENABLE); dm_write_reg(ctx, addr, value); } static void release_engine( struct engine *engine) { struct i2c_hw_engine_dce80 *hw_engine = FROM_ENGINE(engine); struct i2c_engine *base = NULL; bool safe_to_reset; uint32_t value = 0; base = &hw_engine->base.base; /* Restore original HW engine speed */ base->funcs->set_speed(base, hw_engine->base.original_speed); /* Release I2C */ { value = dm_read_reg(engine->ctx, mmDC_I2C_ARBITRATION); set_reg_field_value( value, 1, DC_I2C_ARBITRATION, DC_I2C_SW_DONE_USING_I2C_REG); dm_write_reg(engine->ctx, mmDC_I2C_ARBITRATION, value); } /* Reset HW engine */ { uint32_t i2c_sw_status = 0; value = dm_read_reg(engine->ctx, mmDC_I2C_SW_STATUS); i2c_sw_status = get_reg_field_value( value, DC_I2C_SW_STATUS, DC_I2C_SW_STATUS); /* if used by SW, safe to reset */ safe_to_reset = (i2c_sw_status == 1); } { value = dm_read_reg(engine->ctx, mmDC_I2C_CONTROL); if (safe_to_reset) set_reg_field_value( value, 1, DC_I2C_CONTROL, DC_I2C_SOFT_RESET); set_reg_field_value( value, 1, DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET); dm_write_reg(engine->ctx, mmDC_I2C_CONTROL, value); } /* HW I2c engine - clock gating feature */ if (!hw_engine->engine_keep_power_up_count) disable_i2c_hw_engine(hw_engine); } static void destruct( struct i2c_hw_engine_dce80 *engine) { dal_i2c_hw_engine_destruct(&engine->base); } static void destroy( struct i2c_engine **i2c_engine) { struct i2c_hw_engine_dce80 *engine = FROM_I2C_ENGINE(*i2c_engine); destruct(engine); kfree(engine); *i2c_engine = NULL; } static bool setup_engine( struct i2c_engine *i2c_engine) { uint32_t value = 0; struct i2c_hw_engine_dce80 *engine = FROM_I2C_ENGINE(i2c_engine); /* Program pin select */ { const uint32_t addr = mmDC_I2C_CONTROL; value = dm_read_reg(i2c_engine->base.ctx, addr); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_GO); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_SOFT_RESET); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_SEND_RESET); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_TRANSACTION_COUNT); set_reg_field_value( value, engine->engine_id, DC_I2C_CONTROL, DC_I2C_DDC_SELECT); dm_write_reg(i2c_engine->base.ctx, addr, value); } /* Program time limit */ { const uint32_t addr = engine->addr.DC_I2C_DDCX_SETUP; value = dm_read_reg(i2c_engine->base.ctx, addr); set_reg_field_value( value, I2C_SETUP_TIME_LIMIT, DC_I2C_DDC1_SETUP, DC_I2C_DDC1_TIME_LIMIT); set_reg_field_value( value, 1, DC_I2C_DDC1_SETUP, DC_I2C_DDC1_ENABLE); dm_write_reg(i2c_engine->base.ctx, addr, value); } /* Program HW priority * set to High - interrupt software I2C at any time * Enable restart of SW I2C that was interrupted by HW * disable queuing of software while I2C is in use by HW */ { value = dm_read_reg(i2c_engine->base.ctx, mmDC_I2C_ARBITRATION); set_reg_field_value( value, 0, DC_I2C_ARBITRATION, DC_I2C_NO_QUEUED_SW_GO); set_reg_field_value( value, DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_NORMAL, DC_I2C_ARBITRATION, DC_I2C_SW_PRIORITY); dm_write_reg(i2c_engine->base.ctx, mmDC_I2C_ARBITRATION, value); } return true; } static uint32_t get_speed( const struct i2c_engine *i2c_engine) { const struct i2c_hw_engine_dce80 *engine = FROM_I2C_ENGINE(i2c_engine); const uint32_t addr = engine->addr.DC_I2C_DDCX_SPEED; uint32_t pre_scale = 0; uint32_t value = dm_read_reg(i2c_engine->base.ctx, addr); pre_scale = get_reg_field_value( value, DC_I2C_DDC1_SPEED, DC_I2C_DDC1_PRESCALE); /* [anaumov] it seems following is unnecessary */ /*ASSERT(value.bits.DC_I2C_DDC1_PRESCALE);*/ return pre_scale ? engine->reference_frequency / pre_scale : engine->base.default_speed; } static void set_speed( struct i2c_engine *i2c_engine, uint32_t speed) { struct i2c_hw_engine_dce80 *engine = FROM_I2C_ENGINE(i2c_engine); if (speed) { const uint32_t addr = engine->addr.DC_I2C_DDCX_SPEED; uint32_t value = dm_read_reg(i2c_engine->base.ctx, addr); set_reg_field_value( value, engine->reference_frequency / speed, DC_I2C_DDC1_SPEED, DC_I2C_DDC1_PRESCALE); set_reg_field_value( value, 2, DC_I2C_DDC1_SPEED, DC_I2C_DDC1_THRESHOLD); dm_write_reg(i2c_engine->base.ctx, addr, value); } } static inline void reset_hw_engine(struct engine *engine) { uint32_t value = dm_read_reg(engine->ctx, mmDC_I2C_CONTROL); set_reg_field_value( value, 1, DC_I2C_CONTROL, DC_I2C_SOFT_RESET); set_reg_field_value( value, 1, DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET); dm_write_reg(engine->ctx, mmDC_I2C_CONTROL, value); } static bool is_hw_busy(struct engine *engine) { uint32_t i2c_sw_status = 0; uint32_t value = dm_read_reg(engine->ctx, mmDC_I2C_SW_STATUS); i2c_sw_status = get_reg_field_value( value, DC_I2C_SW_STATUS, DC_I2C_SW_STATUS); if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_IDLE) return false; reset_hw_engine(engine); value = dm_read_reg(engine->ctx, mmDC_I2C_SW_STATUS); i2c_sw_status = get_reg_field_value( value, DC_I2C_SW_STATUS, DC_I2C_SW_STATUS); return i2c_sw_status != DC_I2C_STATUS__DC_I2C_STATUS_IDLE; } /* * @brief * DC_GPIO_DDC MM register offsets */ static const uint32_t transaction_addr[] = { mmDC_I2C_TRANSACTION0, mmDC_I2C_TRANSACTION1, mmDC_I2C_TRANSACTION2, mmDC_I2C_TRANSACTION3 }; static bool process_transaction( struct i2c_hw_engine_dce80 *engine, struct i2c_request_transaction_data *request) { uint32_t length = request->length; uint8_t *buffer = request->data; bool last_transaction = false; uint32_t value = 0; struct dc_context *ctx = NULL; ctx = engine->base.base.base.ctx; { const uint32_t addr = transaction_addr[engine->transaction_count]; value = dm_read_reg(ctx, addr); set_reg_field_value( value, 1, DC_I2C_TRANSACTION0, DC_I2C_STOP_ON_NACK0); set_reg_field_value( value, 1, DC_I2C_TRANSACTION0, DC_I2C_START0); if ((engine->transaction_count == 3) || (request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) || (request->action & I2CAUX_TRANSACTION_ACTION_I2C_READ)) { set_reg_field_value( value, 1, DC_I2C_TRANSACTION0, DC_I2C_STOP0); last_transaction = true; } else set_reg_field_value( value, 0, DC_I2C_TRANSACTION0, DC_I2C_STOP0); set_reg_field_value( value, (0 != (request->action & I2CAUX_TRANSACTION_ACTION_I2C_READ)), DC_I2C_TRANSACTION0, DC_I2C_RW0); set_reg_field_value( value, length, DC_I2C_TRANSACTION0, DC_I2C_COUNT0); dm_write_reg(ctx, addr, value); } /* Write the I2C address and I2C data * into the hardware circular buffer, one byte per entry. * As an example, the 7-bit I2C slave address for CRT monitor * for reading DDC/EDID information is 0b1010001. * For an I2C send operation, the LSB must be programmed to 0; * for I2C receive operation, the LSB must be programmed to 1. */ { value = 0; set_reg_field_value( value, false, DC_I2C_DATA, DC_I2C_DATA_RW); set_reg_field_value( value, request->address, DC_I2C_DATA, DC_I2C_DATA); if (engine->transaction_count == 0) { set_reg_field_value( value, 0, DC_I2C_DATA, DC_I2C_INDEX); /*enable index write*/ set_reg_field_value( value, 1, DC_I2C_DATA, DC_I2C_INDEX_WRITE); } dm_write_reg(ctx, mmDC_I2C_DATA, value); if (!(request->action & I2CAUX_TRANSACTION_ACTION_I2C_READ)) { set_reg_field_value( value, 0, DC_I2C_DATA, DC_I2C_INDEX_WRITE); while (length) { set_reg_field_value( value, *buffer++, DC_I2C_DATA, DC_I2C_DATA); dm_write_reg(ctx, mmDC_I2C_DATA, value); --length; } } } ++engine->transaction_count; engine->buffer_used_bytes += length + 1; return last_transaction; } static void execute_transaction( struct i2c_hw_engine_dce80 *engine) { uint32_t value = 0; struct dc_context *ctx = NULL; ctx = engine->base.base.base.ctx; { const uint32_t addr = engine->addr.DC_I2C_DDCX_SETUP; value = dm_read_reg(ctx, addr); set_reg_field_value( value, 0, DC_I2C_DDC1_SETUP, DC_I2C_DDC1_DATA_DRIVE_EN); set_reg_field_value( value, 0, DC_I2C_DDC1_SETUP, DC_I2C_DDC1_CLK_DRIVE_EN); set_reg_field_value( value, 0, DC_I2C_DDC1_SETUP, DC_I2C_DDC1_DATA_DRIVE_SEL); set_reg_field_value( value, 0, DC_I2C_DDC1_SETUP, DC_I2C_DDC1_INTRA_TRANSACTION_DELAY); set_reg_field_value( value, 0, DC_I2C_DDC1_SETUP, DC_I2C_DDC1_INTRA_BYTE_DELAY); dm_write_reg(ctx, addr, value); } { const uint32_t addr = mmDC_I2C_CONTROL; value = dm_read_reg(ctx, addr); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_SOFT_RESET); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_SEND_RESET); set_reg_field_value( value, 0, DC_I2C_CONTROL, DC_I2C_GO); set_reg_field_value( value, engine->transaction_count - 1, DC_I2C_CONTROL, DC_I2C_TRANSACTION_COUNT); dm_write_reg(ctx, addr, value); } /* start I2C transfer */ { const uint32_t addr = mmDC_I2C_CONTROL; value = dm_read_reg(ctx, addr); set_reg_field_value( value, 1, DC_I2C_CONTROL, DC_I2C_GO); dm_write_reg(ctx, addr, value); } /* all transactions were executed and HW buffer became empty * (even though it actually happens when status becomes DONE) */ engine->transaction_count = 0; engine->buffer_used_bytes = 0; } static void submit_channel_request( struct i2c_engine *engine, struct i2c_request_transaction_data *request) { request->status = I2C_CHANNEL_OPERATION_SUCCEEDED; if (!process_transaction(FROM_I2C_ENGINE(engine), request)) return; if (is_hw_busy(&engine->base)) { request->status = I2C_CHANNEL_OPERATION_ENGINE_BUSY; return; } execute_transaction(FROM_I2C_ENGINE(engine)); } static void process_channel_reply( struct i2c_engine *engine, struct i2c_reply_transaction_data *reply) { uint32_t length = reply->length; uint8_t *buffer = reply->data; uint32_t value = 0; /*set index*/ set_reg_field_value( value, length - 1, DC_I2C_DATA, DC_I2C_INDEX); set_reg_field_value( value, 1, DC_I2C_DATA, DC_I2C_DATA_RW); set_reg_field_value( value, 1, DC_I2C_DATA, DC_I2C_INDEX_WRITE); dm_write_reg(engine->base.ctx, mmDC_I2C_DATA, value); while (length) { /* after reading the status, * if the I2C operation executed successfully * (i.e. DC_I2C_STATUS_DONE = 1) then the I2C controller * should read data bytes from I2C circular data buffer */ value = dm_read_reg(engine->base.ctx, mmDC_I2C_DATA); *buffer++ = get_reg_field_value( value, DC_I2C_DATA, DC_I2C_DATA); --length; } } static enum i2c_channel_operation_result get_channel_status( struct i2c_engine *engine, uint8_t *returned_bytes) { uint32_t i2c_sw_status = 0; uint32_t value = dm_read_reg(engine->base.ctx, mmDC_I2C_SW_STATUS); i2c_sw_status = get_reg_field_value( value, DC_I2C_SW_STATUS, DC_I2C_SW_STATUS); if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_SW) return I2C_CHANNEL_OPERATION_ENGINE_BUSY; else if (value & DC_I2C_SW_STATUS__DC_I2C_SW_STOPPED_ON_NACK_MASK) return I2C_CHANNEL_OPERATION_NO_RESPONSE; else if (value & DC_I2C_SW_STATUS__DC_I2C_SW_TIMEOUT_MASK) return I2C_CHANNEL_OPERATION_TIMEOUT; else if (value & DC_I2C_SW_STATUS__DC_I2C_SW_ABORTED_MASK) return I2C_CHANNEL_OPERATION_FAILED; else if (value & DC_I2C_SW_STATUS__DC_I2C_SW_DONE_MASK) return I2C_CHANNEL_OPERATION_SUCCEEDED; /* * this is the case when HW used for communication, I2C_SW_STATUS * could be zero */ return I2C_CHANNEL_OPERATION_SUCCEEDED; } static uint32_t get_hw_buffer_available_size( const struct i2c_hw_engine *engine) { return I2C_HW_BUFFER_SIZE - FROM_I2C_HW_ENGINE(engine)->buffer_used_bytes; } static uint32_t get_transaction_timeout( const struct i2c_hw_engine *engine, uint32_t length) { uint32_t speed = engine->base.funcs->get_speed(&engine->base); uint32_t period_timeout; uint32_t num_of_clock_stretches; if (!speed) return 0; period_timeout = (1000 * TRANSACTION_TIMEOUT_IN_I2C_CLOCKS) / speed; num_of_clock_stretches = 1 + (length << 3) + 1; num_of_clock_stretches += (FROM_I2C_HW_ENGINE(engine)->buffer_used_bytes << 3) + (FROM_I2C_HW_ENGINE(engine)->transaction_count << 1); return period_timeout * num_of_clock_stretches; } /* * @brief * DC_I2C_DDC1_SETUP MM register offsets * * @note * The indices of this offset array are DDC engine IDs */ static const int32_t ddc_setup_offset[] = { mmDC_I2C_DDC1_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 1 */ mmDC_I2C_DDC2_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 2 */ mmDC_I2C_DDC3_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 3 */ mmDC_I2C_DDC4_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 4 */ mmDC_I2C_DDC5_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 5 */ mmDC_I2C_DDC6_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 6 */ mmDC_I2C_DDCVGA_SETUP - mmDC_I2C_DDC1_SETUP /* DDC Engine 7 */ }; /* * @brief * DC_I2C_DDC1_SPEED MM register offsets * * @note * The indices of this offset array are DDC engine IDs */ static const int32_t ddc_speed_offset[] = { mmDC_I2C_DDC1_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 1 */ mmDC_I2C_DDC2_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 2 */ mmDC_I2C_DDC3_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 3 */ mmDC_I2C_DDC4_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 4 */ mmDC_I2C_DDC5_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 5 */ mmDC_I2C_DDC6_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 6 */ mmDC_I2C_DDCVGA_SPEED - mmDC_I2C_DDC1_SPEED /* DDC Engine 7 */ }; static const struct i2c_engine_funcs i2c_engine_funcs = { .destroy = destroy, .get_speed = get_speed, .set_speed = set_speed, .setup_engine = setup_engine, .submit_channel_request = submit_channel_request, .process_channel_reply = process_channel_reply, .get_channel_status = get_channel_status, .acquire_engine = dal_i2c_hw_engine_acquire_engine, }; static const struct engine_funcs engine_funcs = { .release_engine = release_engine, .get_engine_type = dal_i2c_hw_engine_get_engine_type, .acquire = dal_i2c_engine_acquire, .submit_request = dal_i2c_hw_engine_submit_request, }; static const struct i2c_hw_engine_funcs i2c_hw_engine_funcs = { .get_hw_buffer_available_size = get_hw_buffer_available_size, .get_transaction_timeout = get_transaction_timeout, .wait_on_operation_result = dal_i2c_hw_engine_wait_on_operation_result, }; static void construct( struct i2c_hw_engine_dce80 *engine, const struct i2c_hw_engine_dce80_create_arg *arg) { dal_i2c_hw_engine_construct(&engine->base, arg->ctx); engine->base.base.base.funcs = &engine_funcs; engine->base.base.funcs = &i2c_engine_funcs; engine->base.funcs = &i2c_hw_engine_funcs; engine->base.default_speed = arg->default_speed; engine->addr.DC_I2C_DDCX_SETUP = mmDC_I2C_DDC1_SETUP + ddc_setup_offset[arg->engine_id]; engine->addr.DC_I2C_DDCX_SPEED = mmDC_I2C_DDC1_SPEED + ddc_speed_offset[arg->engine_id]; engine->engine_id = arg->engine_id; engine->reference_frequency = arg->reference_frequency; engine->buffer_used_bytes = 0; engine->transaction_count = 0; engine->engine_keep_power_up_count = 1; } struct i2c_engine *dal_i2c_hw_engine_dce80_create( const struct i2c_hw_engine_dce80_create_arg *arg) { struct i2c_hw_engine_dce80 *engine; if (!arg) { BREAK_TO_DEBUGGER(); return NULL; } if ((arg->engine_id >= sizeof(ddc_setup_offset) / sizeof(int32_t)) || (arg->engine_id >= sizeof(ddc_speed_offset) / sizeof(int32_t)) || !arg->reference_frequency) { BREAK_TO_DEBUGGER(); return NULL; } engine = kzalloc(sizeof(struct i2c_hw_engine_dce80), GFP_KERNEL); if (!engine) { BREAK_TO_DEBUGGER(); return NULL; } construct(engine, arg); return &engine->base.base; }