/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #define SWSMU_CODE_LAYER_L2 #include #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_atombios.h" #include "smu_v13_0.h" #include "smu13_driver_if_aldebaran.h" #include "soc15_common.h" #include "atom.h" #include "power_state.h" #include "aldebaran_ppt.h" #include "smu_v13_0_pptable.h" #include "aldebaran_ppsmc.h" #include "nbio/nbio_7_4_offset.h" #include "nbio/nbio_7_4_sh_mask.h" #include "thm/thm_11_0_2_offset.h" #include "thm/thm_11_0_2_sh_mask.h" #include "amdgpu_xgmi.h" #include #include "amdgpu_ras.h" #include "smu_cmn.h" #include "mp/mp_13_0_2_offset.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c)) #define ALDEBARAN_FEA_MAP(smu_feature, aldebaran_feature) \ [smu_feature] = {1, (aldebaran_feature)} #define FEATURE_MASK(feature) (1ULL << feature) #define SMC_DPM_FEATURE ( \ FEATURE_MASK(FEATURE_DATA_CALCULATIONS) | \ FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_LCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_XGMI_BIT) | \ FEATURE_MASK(FEATURE_DPM_VCN_BIT)) /* possible frequency drift (1Mhz) */ #define EPSILON 1 #define smnPCIE_ESM_CTRL 0x111003D0 static const struct smu_temperature_range smu13_thermal_policy[] = { {-273150, 99000, 99000, -273150, 99000, 99000, -273150, 99000, 99000}, { 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000}, }; static const struct cmn2asic_msg_mapping aldebaran_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 0), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1), MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0), MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0), MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow, 0), MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh, 0), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1), MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0), MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0), MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0), MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh, 0), MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow, 0), MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 0), MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 0), MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 0), MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0), MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 0), MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 0), MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1), MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1), MSG_MAP(GetVoltageByDpm, PPSMC_MSG_GetVoltageByDpm, 0), MSG_MAP(GetVoltageByDpmOverdrive, PPSMC_MSG_GetVoltageByDpmOverdrive, 0), MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0), MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 1), MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 0), MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDriverReset, 0), MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0), MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh, 0), MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow, 0), MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize, 0), MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData, 0), MSG_MAP(WaflTest, PPSMC_MSG_WaflTest, 0), MSG_MAP(SetMemoryChannelEnable, PPSMC_MSG_SetMemoryChannelEnable, 0), MSG_MAP(SetNumBadHbmPagesRetired, PPSMC_MSG_SetNumBadHbmPagesRetired, 0), MSG_MAP(DFCstateControl, PPSMC_MSG_DFCstateControl, 0), MSG_MAP(GetGmiPwrDnHyst, PPSMC_MSG_GetGmiPwrDnHyst, 0), MSG_MAP(SetGmiPwrDnHyst, PPSMC_MSG_SetGmiPwrDnHyst, 0), MSG_MAP(GmiPwrDnControl, PPSMC_MSG_GmiPwrDnControl, 0), MSG_MAP(EnterGfxoff, PPSMC_MSG_EnterGfxoff, 0), MSG_MAP(ExitGfxoff, PPSMC_MSG_ExitGfxoff, 0), MSG_MAP(SetExecuteDMATest, PPSMC_MSG_SetExecuteDMATest, 0), MSG_MAP(EnableDeterminism, PPSMC_MSG_EnableDeterminism, 0), MSG_MAP(DisableDeterminism, PPSMC_MSG_DisableDeterminism, 0), MSG_MAP(SetUclkDpmMode, PPSMC_MSG_SetUclkDpmMode, 0), MSG_MAP(GfxDriverResetRecovery, PPSMC_MSG_GfxDriverResetRecovery, 0), }; static const struct cmn2asic_mapping aldebaran_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, PPCLK_GFXCLK), CLK_MAP(SCLK, PPCLK_GFXCLK), CLK_MAP(SOCCLK, PPCLK_SOCCLK), CLK_MAP(FCLK, PPCLK_FCLK), CLK_MAP(UCLK, PPCLK_UCLK), CLK_MAP(MCLK, PPCLK_UCLK), CLK_MAP(DCLK, PPCLK_DCLK), CLK_MAP(VCLK, PPCLK_VCLK), CLK_MAP(LCLK, PPCLK_LCLK), }; static const struct cmn2asic_mapping aldebaran_feature_mask_map[SMU_FEATURE_COUNT] = { ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_PREFETCHER_BIT, FEATURE_DATA_CALCULATIONS), ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_GFXCLK_BIT, FEATURE_DPM_GFXCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_UCLK_BIT, FEATURE_DPM_UCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_SOCCLK_BIT, FEATURE_DPM_SOCCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_FCLK_BIT, FEATURE_DPM_FCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_LCLK_BIT, FEATURE_DPM_LCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_XGMI_BIT, FEATURE_DPM_XGMI_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_GFXCLK_BIT, FEATURE_DS_GFXCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_SOCCLK_BIT, FEATURE_DS_SOCCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_LCLK_BIT, FEATURE_DS_LCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_FCLK_BIT, FEATURE_DS_FCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_UCLK_BIT, FEATURE_DS_UCLK_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_GFX_SS_BIT, FEATURE_GFX_SS_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_VCN_PG_BIT, FEATURE_DPM_VCN_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_RSMU_SMN_CG_BIT, FEATURE_RSMU_SMN_CG_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_WAFL_CG_BIT, FEATURE_WAFL_CG_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_PPT_BIT, FEATURE_PPT_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_TDC_BIT, FEATURE_TDC_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_APCC_PLUS_BIT, FEATURE_APCC_PLUS_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_APCC_DFLL_BIT, FEATURE_APCC_DFLL_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_FUSE_CG_BIT, FEATURE_FUSE_CG_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_MP1_CG_BIT, FEATURE_MP1_CG_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_SMUIO_CG_BIT, FEATURE_SMUIO_CG_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_THM_CG_BIT, FEATURE_THM_CG_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_CLK_CG_BIT, FEATURE_CLK_CG_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_FW_CTF_BIT, FEATURE_FW_CTF_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_THERMAL_BIT, FEATURE_THERMAL_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_OUT_OF_BAND_MONITOR_BIT, FEATURE_OUT_OF_BAND_MONITOR_BIT), ALDEBARAN_FEA_MAP(SMU_FEATURE_XGMI_PER_LINK_PWR_DWN_BIT,FEATURE_XGMI_PER_LINK_PWR_DWN), ALDEBARAN_FEA_MAP(SMU_FEATURE_DF_CSTATE_BIT, FEATURE_DF_CSTATE), }; static const struct cmn2asic_mapping aldebaran_table_map[SMU_TABLE_COUNT] = { TAB_MAP(PPTABLE), TAB_MAP(AVFS_PSM_DEBUG), TAB_MAP(AVFS_FUSE_OVERRIDE), TAB_MAP(PMSTATUSLOG), TAB_MAP(SMU_METRICS), TAB_MAP(DRIVER_SMU_CONFIG), TAB_MAP(I2C_COMMANDS), }; static const uint8_t aldebaran_throttler_map[] = { [THROTTLER_PPT0_BIT] = (SMU_THROTTLER_PPT0_BIT), [THROTTLER_PPT1_BIT] = (SMU_THROTTLER_PPT1_BIT), [THROTTLER_TDC_GFX_BIT] = (SMU_THROTTLER_TDC_GFX_BIT), [THROTTLER_TDC_SOC_BIT] = (SMU_THROTTLER_TDC_SOC_BIT), [THROTTLER_TDC_HBM_BIT] = (SMU_THROTTLER_TDC_MEM_BIT), [THROTTLER_TEMP_GPU_BIT] = (SMU_THROTTLER_TEMP_GPU_BIT), [THROTTLER_TEMP_MEM_BIT] = (SMU_THROTTLER_TEMP_MEM_BIT), [THROTTLER_TEMP_VR_GFX_BIT] = (SMU_THROTTLER_TEMP_VR_GFX_BIT), [THROTTLER_TEMP_VR_SOC_BIT] = (SMU_THROTTLER_TEMP_VR_SOC_BIT), [THROTTLER_TEMP_VR_MEM_BIT] = (SMU_THROTTLER_TEMP_VR_MEM0_BIT), [THROTTLER_APCC_BIT] = (SMU_THROTTLER_APCC_BIT), }; static int aldebaran_tables_init(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU13_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); if (!smu_table->metrics_table) return -ENOMEM; smu_table->metrics_time = 0; smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3); smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL); if (!smu_table->gpu_metrics_table) { kfree(smu_table->metrics_table); return -ENOMEM; } return 0; } static int aldebaran_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; smu_dpm->dpm_context = kzalloc(sizeof(struct smu_13_0_dpm_context), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct smu_13_0_dpm_context); smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state), GFP_KERNEL); if (!smu_dpm->dpm_current_power_state) return -ENOMEM; smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state), GFP_KERNEL); if (!smu_dpm->dpm_request_power_state) return -ENOMEM; return 0; } static int aldebaran_init_smc_tables(struct smu_context *smu) { int ret = 0; ret = aldebaran_tables_init(smu); if (ret) return ret; ret = aldebaran_allocate_dpm_context(smu); if (ret) return ret; return smu_v13_0_init_smc_tables(smu); } static int aldebaran_get_allowed_feature_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { if (num > 2) return -EINVAL; /* pptable will handle the features to enable */ memset(feature_mask, 0xFF, sizeof(uint32_t) * num); return 0; } static int aldebaran_set_default_dpm_table(struct smu_context *smu) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_13_0_dpm_table *dpm_table = NULL; PPTable_t *pptable = smu->smu_table.driver_pptable; int ret = 0; /* socclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.soc_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_SOCCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* gfxclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.gfx_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { /* in the case of gfxclk, only fine-grained dpm is honored */ dpm_table->count = 2; dpm_table->dpm_levels[0].value = pptable->GfxclkFmin; dpm_table->dpm_levels[0].enabled = true; dpm_table->dpm_levels[1].value = pptable->GfxclkFmax; dpm_table->dpm_levels[1].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[1].value; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* memclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.uclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_UCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* fclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.fclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_FCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } return 0; } static int aldebaran_check_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_powerplay_table *powerplay_table = table_context->power_play_table; table_context->thermal_controller_type = powerplay_table->thermal_controller_type; return 0; } static int aldebaran_store_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_powerplay_table *powerplay_table = table_context->power_play_table; memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable, sizeof(PPTable_t)); return 0; } static int aldebaran_append_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; struct atom_smc_dpm_info_v4_10 *smc_dpm_table; int index, ret; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smc_dpm_info); ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table); if (ret) return ret; dev_info(smu->adev->dev, "smc_dpm_info table revision(format.content): %d.%d\n", smc_dpm_table->table_header.format_revision, smc_dpm_table->table_header.content_revision); if ((smc_dpm_table->table_header.format_revision == 4) && (smc_dpm_table->table_header.content_revision == 10)) memcpy(&smc_pptable->GfxMaxCurrent, &smc_dpm_table->GfxMaxCurrent, sizeof(*smc_dpm_table) - offsetof(struct atom_smc_dpm_info_v4_10, GfxMaxCurrent)); return 0; } static int aldebaran_setup_pptable(struct smu_context *smu) { int ret = 0; /* VBIOS pptable is the first choice */ smu->smu_table.boot_values.pp_table_id = 0; ret = smu_v13_0_setup_pptable(smu); if (ret) return ret; ret = aldebaran_store_powerplay_table(smu); if (ret) return ret; ret = aldebaran_append_powerplay_table(smu); if (ret) return ret; ret = aldebaran_check_powerplay_table(smu); if (ret) return ret; return ret; } static int aldebaran_run_btc(struct smu_context *smu) { int ret; ret = smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL); if (ret) dev_err(smu->adev->dev, "RunDcBtc failed!\n"); return ret; } static int aldebaran_populate_umd_state_clk(struct smu_context *smu) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_13_0_dpm_table *gfx_table = &dpm_context->dpm_tables.gfx_table; struct smu_13_0_dpm_table *mem_table = &dpm_context->dpm_tables.uclk_table; struct smu_13_0_dpm_table *soc_table = &dpm_context->dpm_tables.soc_table; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; pstate_table->gfxclk_pstate.min = gfx_table->min; pstate_table->gfxclk_pstate.peak = gfx_table->max; pstate_table->gfxclk_pstate.curr.min = gfx_table->min; pstate_table->gfxclk_pstate.curr.max = gfx_table->max; pstate_table->uclk_pstate.min = mem_table->min; pstate_table->uclk_pstate.peak = mem_table->max; pstate_table->uclk_pstate.curr.min = mem_table->min; pstate_table->uclk_pstate.curr.max = mem_table->max; pstate_table->socclk_pstate.min = soc_table->min; pstate_table->socclk_pstate.peak = soc_table->max; pstate_table->socclk_pstate.curr.min = soc_table->min; pstate_table->socclk_pstate.curr.max = soc_table->max; if (gfx_table->count > ALDEBARAN_UMD_PSTATE_GFXCLK_LEVEL && mem_table->count > ALDEBARAN_UMD_PSTATE_MCLK_LEVEL && soc_table->count > ALDEBARAN_UMD_PSTATE_SOCCLK_LEVEL) { pstate_table->gfxclk_pstate.standard = gfx_table->dpm_levels[ALDEBARAN_UMD_PSTATE_GFXCLK_LEVEL].value; pstate_table->uclk_pstate.standard = mem_table->dpm_levels[ALDEBARAN_UMD_PSTATE_MCLK_LEVEL].value; pstate_table->socclk_pstate.standard = soc_table->dpm_levels[ALDEBARAN_UMD_PSTATE_SOCCLK_LEVEL].value; } else { pstate_table->gfxclk_pstate.standard = pstate_table->gfxclk_pstate.min; pstate_table->uclk_pstate.standard = pstate_table->uclk_pstate.min; pstate_table->socclk_pstate.standard = pstate_table->socclk_pstate.min; } return 0; } static int aldebaran_get_clk_table(struct smu_context *smu, struct pp_clock_levels_with_latency *clocks, struct smu_13_0_dpm_table *dpm_table) { int i, count; count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; clocks->num_levels = count; for (i = 0; i < count; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } return 0; } static int aldebaran_freqs_in_same_level(int32_t frequency1, int32_t frequency2) { return (abs(frequency1 - frequency2) <= EPSILON); } static bool aldebaran_is_primary(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; if (adev->smuio.funcs && adev->smuio.funcs->get_die_id) return adev->smuio.funcs->get_die_id(adev) == 0; return true; } static int aldebaran_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table; int ret = 0; mutex_lock(&smu->metrics_lock); ret = smu_cmn_get_metrics_table_locked(smu, NULL, false); if (ret) { mutex_unlock(&smu->metrics_lock); return ret; } switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = metrics->CurrClock[PPCLK_VCLK]; break; case METRICS_CURR_DCLK: *value = metrics->CurrClock[PPCLK_DCLK]; break; case METRICS_CURR_FCLK: *value = metrics->CurrClock[PPCLK_FCLK]; break; case METRICS_AVERAGE_GFXCLK: *value = metrics->AverageGfxclkFrequency; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->AverageSocclkFrequency; break; case METRICS_AVERAGE_UCLK: *value = metrics->AverageUclkFrequency; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = metrics->AverageUclkActivity; break; case METRICS_AVERAGE_SOCKETPOWER: /* Valid power data is available only from primary die */ *value = aldebaran_is_primary(smu) ? metrics->AverageSocketPower << 8 : 0; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->TemperatureHotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = metrics->TemperatureHBM * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = metrics->TemperatureVrGfx * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = metrics->TemperatureVrSoc * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRMEM: *value = metrics->TemperatureVrMem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; default: *value = UINT_MAX; break; } mutex_unlock(&smu->metrics_lock); return ret; } static int aldebaran_get_current_clk_freq_by_table(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { MetricsMember_t member_type; int clk_id = 0; if (!value) return -EINVAL; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return -EINVAL; switch (clk_id) { case PPCLK_GFXCLK: /* * CurrClock[clk_id] can provide accurate * output only when the dpm feature is enabled. * We can use Average_* for dpm disabled case. * But this is available for gfxclk/uclk/socclk/vclk/dclk. */ if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) member_type = METRICS_CURR_GFXCLK; else member_type = METRICS_AVERAGE_GFXCLK; break; case PPCLK_UCLK: if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) member_type = METRICS_CURR_UCLK; else member_type = METRICS_AVERAGE_UCLK; break; case PPCLK_SOCCLK: if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) member_type = METRICS_CURR_SOCCLK; else member_type = METRICS_AVERAGE_SOCCLK; break; case PPCLK_VCLK: if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) member_type = METRICS_CURR_VCLK; else member_type = METRICS_AVERAGE_VCLK; break; case PPCLK_DCLK: if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) member_type = METRICS_CURR_DCLK; else member_type = METRICS_AVERAGE_DCLK; break; case PPCLK_FCLK: member_type = METRICS_CURR_FCLK; break; default: return -EINVAL; } return aldebaran_get_smu_metrics_data(smu, member_type, value); } static int aldebaran_print_clk_levels(struct smu_context *smu, enum smu_clk_type type, char *buf) { int i, now, size = 0; int ret = 0; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; struct pp_clock_levels_with_latency clocks; struct smu_13_0_dpm_table *single_dpm_table; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct smu_13_0_dpm_context *dpm_context = NULL; uint32_t display_levels; uint32_t freq_values[3] = {0}; uint32_t min_clk, max_clk; if (amdgpu_ras_intr_triggered()) return snprintf(buf, PAGE_SIZE, "unavailable\n"); dpm_context = smu_dpm->dpm_context; switch (type) { case SMU_OD_SCLK: size = sprintf(buf, "%s:\n", "GFXCLK"); fallthrough; case SMU_SCLK: ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_GFXCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current gfx clk Failed!"); return ret; } single_dpm_table = &(dpm_context->dpm_tables.gfx_table); ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get gfx clk levels Failed!"); return ret; } display_levels = clocks.num_levels; min_clk = pstate_table->gfxclk_pstate.curr.min; max_clk = pstate_table->gfxclk_pstate.curr.max; freq_values[0] = min_clk; freq_values[1] = max_clk; /* fine-grained dpm has only 2 levels */ if (now > min_clk && now < max_clk) { display_levels = clocks.num_levels + 1; freq_values[2] = max_clk; freq_values[1] = now; } /* * For DPM disabled case, there will be only one clock level. * And it's safe to assume that is always the current clock. */ if (display_levels == clocks.num_levels) { for (i = 0; i < clocks.num_levels; i++) size += sprintf( buf + size, "%d: %uMhz %s\n", i, freq_values[i], (clocks.num_levels == 1) ? "*" : (aldebaran_freqs_in_same_level( freq_values[i], now) ? "*" : "")); } else { for (i = 0; i < display_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, freq_values[i], i == 1 ? "*" : ""); } break; case SMU_OD_MCLK: size = sprintf(buf, "%s:\n", "MCLK"); fallthrough; case SMU_MCLK: ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_UCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current mclk Failed!"); return ret; } single_dpm_table = &(dpm_context->dpm_tables.uclk_table); ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get memory clk levels Failed!"); return ret; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.num_levels == 1) ? "*" : (aldebaran_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; case SMU_SOCCLK: ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_SOCCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current socclk Failed!"); return ret; } single_dpm_table = &(dpm_context->dpm_tables.soc_table); ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get socclk levels Failed!"); return ret; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.num_levels == 1) ? "*" : (aldebaran_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; case SMU_FCLK: ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_FCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current fclk Failed!"); return ret; } single_dpm_table = &(dpm_context->dpm_tables.fclk_table); ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get fclk levels Failed!"); return ret; } for (i = 0; i < single_dpm_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, single_dpm_table->dpm_levels[i].value, (clocks.num_levels == 1) ? "*" : (aldebaran_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; case SMU_VCLK: ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_VCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current vclk Failed!"); return ret; } single_dpm_table = &(dpm_context->dpm_tables.vclk_table); ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get vclk levels Failed!"); return ret; } for (i = 0; i < single_dpm_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, single_dpm_table->dpm_levels[i].value, (clocks.num_levels == 1) ? "*" : (aldebaran_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; case SMU_DCLK: ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_DCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current dclk Failed!"); return ret; } single_dpm_table = &(dpm_context->dpm_tables.dclk_table); ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get dclk levels Failed!"); return ret; } for (i = 0; i < single_dpm_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, single_dpm_table->dpm_levels[i].value, (clocks.num_levels == 1) ? "*" : (aldebaran_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; default: break; } return size; } static int aldebaran_upload_dpm_level(struct smu_context *smu, bool max, uint32_t feature_mask, uint32_t level) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; uint32_t freq; int ret = 0; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) && (feature_mask & FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT))) { freq = dpm_context->dpm_tables.gfx_table.dpm_levels[level].value; ret = smu_cmn_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_GFXCLK << 16) | (freq & 0xffff), NULL); if (ret) { dev_err(smu->adev->dev, "Failed to set soft %s gfxclk !\n", max ? "max" : "min"); return ret; } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) && (feature_mask & FEATURE_MASK(FEATURE_DPM_UCLK_BIT))) { freq = dpm_context->dpm_tables.uclk_table.dpm_levels[level].value; ret = smu_cmn_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_UCLK << 16) | (freq & 0xffff), NULL); if (ret) { dev_err(smu->adev->dev, "Failed to set soft %s memclk !\n", max ? "max" : "min"); return ret; } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) && (feature_mask & FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT))) { freq = dpm_context->dpm_tables.soc_table.dpm_levels[level].value; ret = smu_cmn_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_SOCCLK << 16) | (freq & 0xffff), NULL); if (ret) { dev_err(smu->adev->dev, "Failed to set soft %s socclk !\n", max ? "max" : "min"); return ret; } } return ret; } static int aldebaran_force_clk_levels(struct smu_context *smu, enum smu_clk_type type, uint32_t mask) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_13_0_dpm_table *single_dpm_table = NULL; uint32_t soft_min_level, soft_max_level; int ret = 0; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (type) { case SMU_SCLK: single_dpm_table = &(dpm_context->dpm_tables.gfx_table); if (soft_max_level >= single_dpm_table->count) { dev_err(smu->adev->dev, "Clock level specified %d is over max allowed %d\n", soft_max_level, single_dpm_table->count - 1); ret = -EINVAL; break; } ret = aldebaran_upload_dpm_level(smu, false, FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT), soft_min_level); if (ret) { dev_err(smu->adev->dev, "Failed to upload boot level to lowest!\n"); break; } ret = aldebaran_upload_dpm_level(smu, true, FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT), soft_max_level); if (ret) dev_err(smu->adev->dev, "Failed to upload dpm max level to highest!\n"); break; case SMU_MCLK: case SMU_SOCCLK: case SMU_FCLK: /* * Should not arrive here since aldebaran does not * support mclk/socclk/fclk softmin/softmax settings */ ret = -EINVAL; break; default: break; } return ret; } static int aldebaran_get_thermal_temperature_range(struct smu_context *smu, struct smu_temperature_range *range) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_powerplay_table *powerplay_table = table_context->power_play_table; PPTable_t *pptable = smu->smu_table.driver_pptable; if (!range) return -EINVAL; memcpy(range, &smu13_thermal_policy[0], sizeof(struct smu_temperature_range)); range->hotspot_crit_max = pptable->ThotspotLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_crit_max = pptable->TmemLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_emergency_max = (pptable->TmemLimit + CTF_OFFSET_MEM)* SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->software_shutdown_temp = powerplay_table->software_shutdown_temp; return 0; } static int aldebaran_get_current_activity_percent(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; if (!value) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: ret = aldebaran_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, value); break; case AMDGPU_PP_SENSOR_MEM_LOAD: ret = aldebaran_get_smu_metrics_data(smu, METRICS_AVERAGE_MEMACTIVITY, value); break; default: dev_err(smu->adev->dev, "Invalid sensor for retrieving clock activity\n"); return -EINVAL; } return ret; } static int aldebaran_get_gpu_power(struct smu_context *smu, uint32_t *value) { if (!value) return -EINVAL; return aldebaran_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER, value); } static int aldebaran_thermal_get_temperature(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; if (!value) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = aldebaran_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, value); break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = aldebaran_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, value); break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = aldebaran_get_smu_metrics_data(smu, METRICS_TEMPERATURE_MEM, value); break; default: dev_err(smu->adev->dev, "Invalid sensor for retrieving temp\n"); return -EINVAL; } return ret; } static int aldebaran_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; if (amdgpu_ras_intr_triggered()) return 0; if (!data || !size) return -EINVAL; mutex_lock(&smu->sensor_lock); switch (sensor) { case AMDGPU_PP_SENSOR_MEM_LOAD: case AMDGPU_PP_SENSOR_GPU_LOAD: ret = aldebaran_get_current_activity_percent(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = aldebaran_get_gpu_power(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: case AMDGPU_PP_SENSOR_EDGE_TEMP: case AMDGPU_PP_SENSOR_MEM_TEMP: ret = aldebaran_thermal_get_temperature(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data); /* the output clock frequency in 10K unit */ *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v13_0_get_gfx_vdd(smu, (uint32_t *)data); *size = 4; break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&smu->sensor_lock); return ret; } static int aldebaran_get_power_limit(struct smu_context *smu, uint32_t *current_power_limit, uint32_t *default_power_limit, uint32_t *max_power_limit) { PPTable_t *pptable = smu->smu_table.driver_pptable; uint32_t power_limit = 0; int ret; if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) return -EINVAL; /* Valid power data is available only from primary die. * For secondary die show the value as 0. */ if (aldebaran_is_primary(smu)) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetPptLimit, &power_limit); if (ret) { /* the last hope to figure out the ppt limit */ if (!pptable) { dev_err(smu->adev->dev, "Cannot get PPT limit due to pptable missing!"); return -EINVAL; } power_limit = pptable->PptLimit; } } if (current_power_limit) *current_power_limit = power_limit; if (default_power_limit) *default_power_limit = power_limit; if (max_power_limit) { if (pptable) *max_power_limit = pptable->PptLimit; } return 0; } static int aldebaran_set_power_limit(struct smu_context *smu, uint32_t n) { /* Power limit can be set only through primary die */ if (aldebaran_is_primary(smu)) return smu_v13_0_set_power_limit(smu, n); return -EINVAL; } static int aldebaran_system_features_control(struct smu_context *smu, bool enable) { int ret; ret = smu_v13_0_system_features_control(smu, enable); if (!ret && enable) ret = aldebaran_run_btc(smu); return ret; } static int aldebaran_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { struct smu_dpm_context *smu_dpm = &(smu->smu_dpm); struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context; struct smu_13_0_dpm_table *gfx_table = &dpm_context->dpm_tables.gfx_table; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; /* Disable determinism if switching to another mode */ if ((smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) && (level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM)) { smu_cmn_send_smc_msg(smu, SMU_MSG_DisableDeterminism, NULL); pstate_table->gfxclk_pstate.curr.max = gfx_table->max; } switch (level) { case AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM: return 0; case AMD_DPM_FORCED_LEVEL_HIGH: case AMD_DPM_FORCED_LEVEL_LOW: case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: default: break; } return smu_v13_0_set_performance_level(smu, level); } static int aldebaran_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { struct smu_dpm_context *smu_dpm = &(smu->smu_dpm); struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; struct amdgpu_device *adev = smu->adev; uint32_t min_clk; uint32_t max_clk; int ret = 0; if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK) return -EINVAL; if ((smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) && (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM)) return -EINVAL; if (smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { if (min >= max) { dev_err(smu->adev->dev, "Minimum GFX clk should be less than the maximum allowed clock\n"); return -EINVAL; } if ((min == pstate_table->gfxclk_pstate.curr.min) && (max == pstate_table->gfxclk_pstate.curr.max)) return 0; ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_GFXCLK, min, max); if (!ret) { pstate_table->gfxclk_pstate.curr.min = min; pstate_table->gfxclk_pstate.curr.max = max; } return ret; } if (smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) { if (!max || (max < dpm_context->dpm_tables.gfx_table.min) || (max > dpm_context->dpm_tables.gfx_table.max)) { dev_warn(adev->dev, "Invalid max frequency %d MHz specified for determinism\n", max); return -EINVAL; } /* Restore default min/max clocks and enable determinism */ min_clk = dpm_context->dpm_tables.gfx_table.min; max_clk = dpm_context->dpm_tables.gfx_table.max; ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk); if (!ret) { usleep_range(500, 1000); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_EnableDeterminism, max, NULL); if (ret) { dev_err(adev->dev, "Failed to enable determinism at GFX clock %d MHz\n", max); } else { pstate_table->gfxclk_pstate.curr.min = min_clk; pstate_table->gfxclk_pstate.curr.max = max; } } } return ret; } static int aldebaran_usr_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) { struct smu_dpm_context *smu_dpm = &(smu->smu_dpm); struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; uint32_t min_clk; uint32_t max_clk; int ret = 0; /* Only allowed in manual or determinism mode */ if ((smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) && (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM)) return -EINVAL; switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (size != 2) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } if (input[0] == 0) { if (input[1] < dpm_context->dpm_tables.gfx_table.min) { dev_warn(smu->adev->dev, "Minimum GFX clk (%ld) MHz specified is less than the minimum allowed (%d) MHz\n", input[1], dpm_context->dpm_tables.gfx_table.min); pstate_table->gfxclk_pstate.custom.min = pstate_table->gfxclk_pstate.curr.min; return -EINVAL; } pstate_table->gfxclk_pstate.custom.min = input[1]; } else if (input[0] == 1) { if (input[1] > dpm_context->dpm_tables.gfx_table.max) { dev_warn(smu->adev->dev, "Maximum GFX clk (%ld) MHz specified is greater than the maximum allowed (%d) MHz\n", input[1], dpm_context->dpm_tables.gfx_table.max); pstate_table->gfxclk_pstate.custom.max = pstate_table->gfxclk_pstate.curr.max; return -EINVAL; } pstate_table->gfxclk_pstate.custom.max = input[1]; } else { return -EINVAL; } break; case PP_OD_RESTORE_DEFAULT_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } else { /* Use the default frequencies for manual and determinism mode */ min_clk = dpm_context->dpm_tables.gfx_table.min; max_clk = dpm_context->dpm_tables.gfx_table.max; return aldebaran_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk); } break; case PP_OD_COMMIT_DPM_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } else { if (!pstate_table->gfxclk_pstate.custom.min) pstate_table->gfxclk_pstate.custom.min = pstate_table->gfxclk_pstate.curr.min; if (!pstate_table->gfxclk_pstate.custom.max) pstate_table->gfxclk_pstate.custom.max = pstate_table->gfxclk_pstate.curr.max; min_clk = pstate_table->gfxclk_pstate.custom.min; max_clk = pstate_table->gfxclk_pstate.custom.max; return aldebaran_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk); } break; default: return -ENOSYS; } return ret; } static bool aldebaran_is_dpm_running(struct smu_context *smu) { int ret; uint32_t feature_mask[2]; unsigned long feature_enabled; ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2); if (ret) return false; feature_enabled = (unsigned long)((uint64_t)feature_mask[0] | ((uint64_t)feature_mask[1] << 32)); return !!(feature_enabled & SMC_DPM_FEATURE); } static void aldebaran_fill_i2c_req(SwI2cRequest_t *req, bool write, uint8_t address, uint32_t numbytes, uint8_t *data) { int i; req->I2CcontrollerPort = 0; req->I2CSpeed = 2; req->SlaveAddress = address; req->NumCmds = numbytes; for (i = 0; i < numbytes; i++) { SwI2cCmd_t *cmd = &req->SwI2cCmds[i]; /* First 2 bytes are always write for lower 2b EEPROM address */ if (i < 2) cmd->CmdConfig = CMDCONFIG_READWRITE_MASK; else cmd->CmdConfig = write ? CMDCONFIG_READWRITE_MASK : 0; /* Add RESTART for read after address filled */ cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0; /* Add STOP in the end */ cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0; /* Fill with data regardless if read or write to simplify code */ cmd->ReadWriteData = data[i]; } } static int aldebaran_i2c_read_data(struct i2c_adapter *control, uint8_t address, uint8_t *data, uint32_t numbytes) { uint32_t i, ret = 0; SwI2cRequest_t req; struct amdgpu_device *adev = to_amdgpu_device(control); struct smu_table_context *smu_table = &adev->smu.smu_table; struct smu_table *table = &smu_table->driver_table; if (numbytes > MAX_SW_I2C_COMMANDS) { dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n", numbytes, MAX_SW_I2C_COMMANDS); return -EINVAL; } memset(&req, 0, sizeof(req)); aldebaran_fill_i2c_req(&req, false, address, numbytes, data); mutex_lock(&adev->smu.mutex); /* Now read data starting with that address */ ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true); mutex_unlock(&adev->smu.mutex); if (!ret) { SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr; /* Assume SMU fills res.SwI2cCmds[i].Data with read bytes */ for (i = 0; i < numbytes; i++) data[i] = res->SwI2cCmds[i].ReadWriteData; dev_dbg(adev->dev, "aldebaran_i2c_read_data, address = %x, bytes = %d, data :", (uint16_t)address, numbytes); print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 8, 1, data, numbytes, false); } else dev_err(adev->dev, "aldebaran_i2c_read_data - error occurred :%x", ret); return ret; } static int aldebaran_i2c_write_data(struct i2c_adapter *control, uint8_t address, uint8_t *data, uint32_t numbytes) { uint32_t ret; SwI2cRequest_t req; struct amdgpu_device *adev = to_amdgpu_device(control); if (numbytes > MAX_SW_I2C_COMMANDS) { dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n", numbytes, MAX_SW_I2C_COMMANDS); return -EINVAL; } memset(&req, 0, sizeof(req)); aldebaran_fill_i2c_req(&req, true, address, numbytes, data); mutex_lock(&adev->smu.mutex); ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true); mutex_unlock(&adev->smu.mutex); if (!ret) { dev_dbg(adev->dev, "aldebaran_i2c_write(), address = %x, bytes = %d , data: ", (uint16_t)address, numbytes); print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 8, 1, data, numbytes, false); /* * According to EEPROM spec there is a MAX of 10 ms required for * EEPROM to flush internal RX buffer after STOP was issued at the * end of write transaction. During this time the EEPROM will not be * responsive to any more commands - so wait a bit more. */ msleep(10); } else dev_err(adev->dev, "aldebaran_i2c_write- error occurred :%x", ret); return ret; } static int aldebaran_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num) { uint32_t i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0; uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 }; for (i = 0; i < num; i++) { /* * SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at * once and hence the data needs to be spliced into chunks and sent each * chunk separately */ data_size = msgs[i].len - 2; data_chunk_size = MAX_SW_I2C_COMMANDS - 2; next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff); data_ptr = msgs[i].buf + 2; for (j = 0; j < data_size / data_chunk_size; j++) { /* Insert the EEPROM dest addess, bits 0-15 */ data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff); data_chunk[1] = (next_eeprom_addr & 0xff); if (msgs[i].flags & I2C_M_RD) { ret = aldebaran_i2c_read_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, MAX_SW_I2C_COMMANDS); memcpy(data_ptr, data_chunk + 2, data_chunk_size); } else { memcpy(data_chunk + 2, data_ptr, data_chunk_size); ret = aldebaran_i2c_write_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, MAX_SW_I2C_COMMANDS); } if (ret) { num = -EIO; goto fail; } next_eeprom_addr += data_chunk_size; data_ptr += data_chunk_size; } if (data_size % data_chunk_size) { data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff); data_chunk[1] = (next_eeprom_addr & 0xff); if (msgs[i].flags & I2C_M_RD) { ret = aldebaran_i2c_read_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, (data_size % data_chunk_size) + 2); memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size); } else { memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size); ret = aldebaran_i2c_write_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, (data_size % data_chunk_size) + 2); } if (ret) { num = -EIO; goto fail; } } } fail: return num; } static u32 aldebaran_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm aldebaran_i2c_algo = { .master_xfer = aldebaran_i2c_xfer, .functionality = aldebaran_i2c_func, }; static int aldebaran_i2c_control_init(struct smu_context *smu, struct i2c_adapter *control) { struct amdgpu_device *adev = to_amdgpu_device(control); int res; control->owner = THIS_MODULE; control->class = I2C_CLASS_SPD; control->dev.parent = &adev->pdev->dev; control->algo = &aldebaran_i2c_algo; snprintf(control->name, sizeof(control->name), "AMDGPU SMU"); res = i2c_add_adapter(control); if (res) DRM_ERROR("Failed to register hw i2c, err: %d\n", res); return res; } static void aldebaran_i2c_control_fini(struct smu_context *smu, struct i2c_adapter *control) { i2c_del_adapter(control); } static void aldebaran_get_unique_id(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; SmuMetrics_t *metrics = smu->smu_table.metrics_table; uint32_t upper32 = 0, lower32 = 0; int ret; mutex_lock(&smu->metrics_lock); ret = smu_cmn_get_metrics_table_locked(smu, NULL, false); if (ret) goto out_unlock; upper32 = metrics->PublicSerialNumUpper32; lower32 = metrics->PublicSerialNumLower32; out_unlock: mutex_unlock(&smu->metrics_lock); adev->unique_id = ((uint64_t)upper32 << 32) | lower32; sprintf(adev->serial, "%016llx", adev->unique_id); } static bool aldebaran_is_baco_supported(struct smu_context *smu) { /* aldebaran is not support baco */ return false; } static int aldebaran_set_df_cstate(struct smu_context *smu, enum pp_df_cstate state) { return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DFCstateControl, state, NULL); } static int aldebaran_allow_xgmi_power_down(struct smu_context *smu, bool en) { return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GmiPwrDnControl, en ? 1 : 0, NULL); } static const struct throttling_logging_label { uint32_t feature_mask; const char *label; } logging_label[] = { {(1U << THROTTLER_TEMP_MEM_BIT), "HBM"}, {(1U << THROTTLER_TEMP_VR_GFX_BIT), "VR of GFX rail"}, {(1U << THROTTLER_TEMP_VR_MEM_BIT), "VR of HBM rail"}, {(1U << THROTTLER_TEMP_VR_SOC_BIT), "VR of SOC rail"}, }; static void aldebaran_log_thermal_throttling_event(struct smu_context *smu) { int ret; int throttler_idx, throtting_events = 0, buf_idx = 0; struct amdgpu_device *adev = smu->adev; uint32_t throttler_status; char log_buf[256]; ret = aldebaran_get_smu_metrics_data(smu, METRICS_THROTTLER_STATUS, &throttler_status); if (ret) return; memset(log_buf, 0, sizeof(log_buf)); for (throttler_idx = 0; throttler_idx < ARRAY_SIZE(logging_label); throttler_idx++) { if (throttler_status & logging_label[throttler_idx].feature_mask) { throtting_events++; buf_idx += snprintf(log_buf + buf_idx, sizeof(log_buf) - buf_idx, "%s%s", throtting_events > 1 ? " and " : "", logging_label[throttler_idx].label); if (buf_idx >= sizeof(log_buf)) { dev_err(adev->dev, "buffer overflow!\n"); log_buf[sizeof(log_buf) - 1] = '\0'; break; } } } dev_warn(adev->dev, "WARN: GPU thermal throttling temperature reached, expect performance decrease. %s.\n", log_buf); kgd2kfd_smi_event_throttle(smu->adev->kfd.dev, throttler_status); } static int aldebaran_get_current_pcie_link_speed(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t esm_ctrl; /* TODO: confirm this on real target */ esm_ctrl = RREG32_PCIE(smnPCIE_ESM_CTRL); if ((esm_ctrl >> 15) & 0x1FFFF) return (((esm_ctrl >> 8) & 0x3F) + 128); return smu_v13_0_get_current_pcie_link_speed(smu); } static ssize_t aldebaran_get_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v1_3 *gpu_metrics = (struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table; SmuMetrics_t metrics; int i, ret = 0; ret = smu_cmn_get_metrics_table(smu, &metrics, true); if (ret) return ret; smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3); gpu_metrics->temperature_edge = metrics.TemperatureEdge; gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot; gpu_metrics->temperature_mem = metrics.TemperatureHBM; gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx; gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc; gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem; gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity; gpu_metrics->average_umc_activity = metrics.AverageUclkActivity; gpu_metrics->average_mm_activity = 0; /* Valid power data is available only from primary die */ if (aldebaran_is_primary(smu)) { gpu_metrics->average_socket_power = metrics.AverageSocketPower; gpu_metrics->energy_accumulator = (uint64_t)metrics.EnergyAcc64bitHigh << 32 | metrics.EnergyAcc64bitLow; } else { gpu_metrics->average_socket_power = 0; gpu_metrics->energy_accumulator = 0; } gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency; gpu_metrics->average_vclk0_frequency = 0; gpu_metrics->average_dclk0_frequency = 0; gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK]; gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK]; gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus, aldebaran_throttler_map); gpu_metrics->current_fan_speed = 0; gpu_metrics->pcie_link_width = smu_v13_0_get_current_pcie_link_width(smu); gpu_metrics->pcie_link_speed = aldebaran_get_current_pcie_link_speed(smu); gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); gpu_metrics->gfx_activity_acc = metrics.GfxBusyAcc; gpu_metrics->mem_activity_acc = metrics.DramBusyAcc; for (i = 0; i < NUM_HBM_INSTANCES; i++) gpu_metrics->temperature_hbm[i] = metrics.TemperatureAllHBM[i]; gpu_metrics->firmware_timestamp = ((uint64_t)metrics.TimeStampHigh << 32) | metrics.TimeStampLow; *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_3); } static int aldebaran_mode2_reset(struct smu_context *smu) { u32 smu_version; int ret = 0, index; struct amdgpu_device *adev = smu->adev; int timeout = 10; smu_cmn_get_smc_version(smu, NULL, &smu_version); index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GfxDeviceDriverReset); mutex_lock(&smu->message_lock); if (smu_version >= 0x00441400) { ret = smu_cmn_send_msg_without_waiting(smu, (uint16_t)index, SMU_RESET_MODE_2); /* This is similar to FLR, wait till max FLR timeout */ msleep(100); dev_dbg(smu->adev->dev, "restore config space...\n"); /* Restore the config space saved during init */ amdgpu_device_load_pci_state(adev->pdev); dev_dbg(smu->adev->dev, "wait for reset ack\n"); while (ret == -ETIME && timeout) { ret = smu_cmn_wait_for_response(smu); /* Wait a bit more time for getting ACK */ if (ret == -ETIME) { --timeout; usleep_range(500, 1000); continue; } if (ret != 1) { dev_err(adev->dev, "failed to send mode2 message \tparam: 0x%08x response %#x\n", SMU_RESET_MODE_2, ret); goto out; } } } else { dev_err(adev->dev, "smu fw 0x%x does not support MSG_GfxDeviceDriverReset MSG\n", smu_version); } if (ret == 1) ret = 0; out: mutex_unlock(&smu->message_lock); return ret; } static bool aldebaran_is_mode1_reset_supported(struct smu_context *smu) { #if 0 struct amdgpu_device *adev = smu->adev; u32 smu_version; uint32_t val; /** * PM FW version support mode1 reset from 68.07 */ smu_cmn_get_smc_version(smu, NULL, &smu_version); if ((smu_version < 0x00440700)) return false; /** * mode1 reset relies on PSP, so we should check if * PSP is alive. */ val = RREG32_SOC15(MP0, 0, regMP0_SMN_C2PMSG_81); return val != 0x0; #endif return true; } static bool aldebaran_is_mode2_reset_supported(struct smu_context *smu) { return true; } static int aldebaran_set_mp1_state(struct smu_context *smu, enum pp_mp1_state mp1_state) { switch (mp1_state) { case PP_MP1_STATE_UNLOAD: return smu_cmn_set_mp1_state(smu, mp1_state); default: return 0; } } static int aldebaran_smu_send_hbm_bad_page_num(struct smu_context *smu, uint32_t size) { int ret = 0; /* message SMU to update the bad page number on SMUBUS */ ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetNumBadHbmPagesRetired, size, NULL); if (ret) dev_err(smu->adev->dev, "[%s] failed to message SMU to update HBM bad pages number\n", __func__); return ret; } static const struct pptable_funcs aldebaran_ppt_funcs = { /* init dpm */ .get_allowed_feature_mask = aldebaran_get_allowed_feature_mask, /* dpm/clk tables */ .set_default_dpm_table = aldebaran_set_default_dpm_table, .populate_umd_state_clk = aldebaran_populate_umd_state_clk, .get_thermal_temperature_range = aldebaran_get_thermal_temperature_range, .print_clk_levels = aldebaran_print_clk_levels, .force_clk_levels = aldebaran_force_clk_levels, .read_sensor = aldebaran_read_sensor, .set_performance_level = aldebaran_set_performance_level, .get_power_limit = aldebaran_get_power_limit, .is_dpm_running = aldebaran_is_dpm_running, .get_unique_id = aldebaran_get_unique_id, .init_microcode = smu_v13_0_init_microcode, .load_microcode = smu_v13_0_load_microcode, .fini_microcode = smu_v13_0_fini_microcode, .init_smc_tables = aldebaran_init_smc_tables, .fini_smc_tables = smu_v13_0_fini_smc_tables, .init_power = smu_v13_0_init_power, .fini_power = smu_v13_0_fini_power, .check_fw_status = smu_v13_0_check_fw_status, /* pptable related */ .setup_pptable = aldebaran_setup_pptable, .get_vbios_bootup_values = smu_v13_0_get_vbios_bootup_values, .check_fw_version = smu_v13_0_check_fw_version, .write_pptable = smu_cmn_write_pptable, .set_driver_table_location = smu_v13_0_set_driver_table_location, .set_tool_table_location = smu_v13_0_set_tool_table_location, .notify_memory_pool_location = smu_v13_0_notify_memory_pool_location, .system_features_control = aldebaran_system_features_control, .send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param, .send_smc_msg = smu_cmn_send_smc_msg, .get_enabled_mask = smu_cmn_get_enabled_mask, .feature_is_enabled = smu_cmn_feature_is_enabled, .disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception, .set_power_limit = aldebaran_set_power_limit, .init_max_sustainable_clocks = smu_v13_0_init_max_sustainable_clocks, .enable_thermal_alert = smu_v13_0_enable_thermal_alert, .disable_thermal_alert = smu_v13_0_disable_thermal_alert, .set_xgmi_pstate = smu_v13_0_set_xgmi_pstate, .register_irq_handler = smu_v13_0_register_irq_handler, .set_azalia_d3_pme = smu_v13_0_set_azalia_d3_pme, .get_max_sustainable_clocks_by_dc = smu_v13_0_get_max_sustainable_clocks_by_dc, .baco_is_support= aldebaran_is_baco_supported, .get_dpm_ultimate_freq = smu_v13_0_get_dpm_ultimate_freq, .set_soft_freq_limited_range = aldebaran_set_soft_freq_limited_range, .od_edit_dpm_table = aldebaran_usr_edit_dpm_table, .set_df_cstate = aldebaran_set_df_cstate, .allow_xgmi_power_down = aldebaran_allow_xgmi_power_down, .log_thermal_throttling_event = aldebaran_log_thermal_throttling_event, .get_pp_feature_mask = smu_cmn_get_pp_feature_mask, .set_pp_feature_mask = smu_cmn_set_pp_feature_mask, .get_gpu_metrics = aldebaran_get_gpu_metrics, .mode1_reset_is_support = aldebaran_is_mode1_reset_supported, .mode2_reset_is_support = aldebaran_is_mode2_reset_supported, .mode1_reset = smu_v13_0_mode1_reset, .set_mp1_state = aldebaran_set_mp1_state, .mode2_reset = aldebaran_mode2_reset, .wait_for_event = smu_v13_0_wait_for_event, .i2c_init = aldebaran_i2c_control_init, .i2c_fini = aldebaran_i2c_control_fini, .send_hbm_bad_pages_num = aldebaran_smu_send_hbm_bad_page_num, }; void aldebaran_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &aldebaran_ppt_funcs; smu->message_map = aldebaran_message_map; smu->clock_map = aldebaran_clk_map; smu->feature_map = aldebaran_feature_mask_map; smu->table_map = aldebaran_table_map; }