/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include "linux/delay.h" #include "cgs_common.h" #include "smu/smu_8_0_d.h" #include "smu/smu_8_0_sh_mask.h" #include "smu8.h" #include "smu8_fusion.h" #include "cz_smumgr.h" #include "cz_ppsmc.h" #include "smu_ucode_xfer_cz.h" #include "gca/gfx_8_0_d.h" #include "gca/gfx_8_0_sh_mask.h" #include "smumgr.h" #define SIZE_ALIGN_32(x) (((x) + 31) / 32 * 32) static enum cz_scratch_entry firmware_list[] = { CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0, CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1, CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE, CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP, CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME, CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G, }; static int cz_smum_get_argument(struct pp_smumgr *smumgr) { if (smumgr == NULL || smumgr->device == NULL) return -EINVAL; return cgs_read_register(smumgr->device, mmSMU_MP1_SRBM2P_ARG_0); } static int cz_send_msg_to_smc_async(struct pp_smumgr *smumgr, uint16_t msg) { int result = 0; if (smumgr == NULL || smumgr->device == NULL) return -EINVAL; result = SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMU_MP1_SRBM2P_RESP_0, CONTENT, 0); if (result != 0) { printk(KERN_ERR "[ powerplay ] cz_send_msg_to_smc_async failed\n"); return result; } cgs_write_register(smumgr->device, mmSMU_MP1_SRBM2P_RESP_0, 0); cgs_write_register(smumgr->device, mmSMU_MP1_SRBM2P_MSG_0, msg); return 0; } /* Send a message to the SMC, and wait for its response.*/ static int cz_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg) { int result = 0; result = cz_send_msg_to_smc_async(smumgr, msg); if (result != 0) return result; result = SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMU_MP1_SRBM2P_RESP_0, CONTENT, 0); if (result != 0) return result; return 0; } static int cz_set_smc_sram_address(struct pp_smumgr *smumgr, uint32_t smc_address, uint32_t limit) { if (smumgr == NULL || smumgr->device == NULL) return -EINVAL; if (0 != (3 & smc_address)) { printk(KERN_ERR "[ powerplay ] SMC address must be 4 byte aligned\n"); return -1; } if (limit <= (smc_address + 3)) { printk(KERN_ERR "[ powerplay ] SMC address beyond the SMC RAM area\n"); return -1; } cgs_write_register(smumgr->device, mmMP0PUB_IND_INDEX_0, SMN_MP1_SRAM_START_ADDR + smc_address); return 0; } static int cz_write_smc_sram_dword(struct pp_smumgr *smumgr, uint32_t smc_address, uint32_t value, uint32_t limit) { int result; if (smumgr == NULL || smumgr->device == NULL) return -EINVAL; result = cz_set_smc_sram_address(smumgr, smc_address, limit); cgs_write_register(smumgr->device, mmMP0PUB_IND_DATA_0, value); return 0; } static int cz_send_msg_to_smc_with_parameter(struct pp_smumgr *smumgr, uint16_t msg, uint32_t parameter) { if (smumgr == NULL || smumgr->device == NULL) return -EINVAL; cgs_write_register(smumgr->device, mmSMU_MP1_SRBM2P_ARG_0, parameter); return cz_send_msg_to_smc(smumgr, msg); } static int cz_request_smu_load_fw(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)(smumgr->backend); int result = 0; uint32_t smc_address; if (!smumgr->reload_fw) { printk(KERN_INFO "[ powerplay ] skip reloading...\n"); return 0; } smc_address = SMU8_FIRMWARE_HEADER_LOCATION + offsetof(struct SMU8_Firmware_Header, UcodeLoadStatus); cz_write_smc_sram_dword(smumgr, smc_address, 0, smc_address+4); cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_DriverDramAddrHi, cz_smu->toc_buffer.mc_addr_high); cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_DriverDramAddrLo, cz_smu->toc_buffer.mc_addr_low); cz_send_msg_to_smc(smumgr, PPSMC_MSG_InitJobs); cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_ExecuteJob, cz_smu->toc_entry_aram); cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_ExecuteJob, cz_smu->toc_entry_power_profiling_index); result = cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_ExecuteJob, cz_smu->toc_entry_initialize_index); return result; } static int cz_check_fw_load_finish(struct pp_smumgr *smumgr, uint32_t firmware) { int i; uint32_t index = SMN_MP1_SRAM_START_ADDR + SMU8_FIRMWARE_HEADER_LOCATION + offsetof(struct SMU8_Firmware_Header, UcodeLoadStatus); if (smumgr == NULL || smumgr->device == NULL) return -EINVAL; return cgs_read_register(smumgr->device, mmSMU_MP1_SRBM2P_ARG_0); cgs_write_register(smumgr->device, mmMP0PUB_IND_INDEX, index); for (i = 0; i < smumgr->usec_timeout; i++) { if (firmware == (cgs_read_register(smumgr->device, mmMP0PUB_IND_DATA) & firmware)) break; udelay(1); } if (i >= smumgr->usec_timeout) { printk(KERN_ERR "[ powerplay ] SMU check loaded firmware failed.\n"); return -EINVAL; } return 0; } static int cz_load_mec_firmware(struct pp_smumgr *smumgr) { uint32_t reg_data; uint32_t tmp; int ret = 0; struct cgs_firmware_info info = {0}; struct cz_smumgr *cz_smu; if (smumgr == NULL || smumgr->device == NULL) return -EINVAL; cz_smu = (struct cz_smumgr *)smumgr->backend; ret = cgs_get_firmware_info(smumgr->device, CGS_UCODE_ID_CP_MEC, &info); if (ret) return -EINVAL; /* Disable MEC parsing/prefetching */ tmp = cgs_read_register(smumgr->device, mmCP_MEC_CNTL); tmp = SMUM_SET_FIELD(tmp, CP_MEC_CNTL, MEC_ME1_HALT, 1); tmp = SMUM_SET_FIELD(tmp, CP_MEC_CNTL, MEC_ME2_HALT, 1); cgs_write_register(smumgr->device, mmCP_MEC_CNTL, tmp); tmp = cgs_read_register(smumgr->device, mmCP_CPC_IC_BASE_CNTL); tmp = SMUM_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0); tmp = SMUM_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, ATC, 0); tmp = SMUM_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = SMUM_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, MTYPE, 1); cgs_write_register(smumgr->device, mmCP_CPC_IC_BASE_CNTL, tmp); reg_data = smu_lower_32_bits(info.mc_addr) & SMUM_FIELD_MASK(CP_CPC_IC_BASE_LO, IC_BASE_LO); cgs_write_register(smumgr->device, mmCP_CPC_IC_BASE_LO, reg_data); reg_data = smu_upper_32_bits(info.mc_addr) & SMUM_FIELD_MASK(CP_CPC_IC_BASE_HI, IC_BASE_HI); cgs_write_register(smumgr->device, mmCP_CPC_IC_BASE_HI, reg_data); return 0; } static int cz_start_smu(struct pp_smumgr *smumgr) { int ret = 0; uint32_t fw_to_check = UCODE_ID_RLC_G_MASK | UCODE_ID_SDMA0_MASK | UCODE_ID_SDMA1_MASK | UCODE_ID_CP_CE_MASK | UCODE_ID_CP_ME_MASK | UCODE_ID_CP_PFP_MASK | UCODE_ID_CP_MEC_JT1_MASK | UCODE_ID_CP_MEC_JT2_MASK; if (smumgr->chip_id == CHIP_STONEY) fw_to_check &= ~(UCODE_ID_SDMA1_MASK | UCODE_ID_CP_MEC_JT2_MASK); cz_request_smu_load_fw(smumgr); cz_check_fw_load_finish(smumgr, fw_to_check); ret = cz_load_mec_firmware(smumgr); if (ret) printk(KERN_ERR "[ powerplay ] Mec Firmware load failed\n"); return ret; } static uint8_t cz_translate_firmware_enum_to_arg(struct pp_smumgr *smumgr, enum cz_scratch_entry firmware_enum) { uint8_t ret = 0; switch (firmware_enum) { case CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0: ret = UCODE_ID_SDMA0; break; case CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1: if (smumgr->chip_id == CHIP_STONEY) ret = UCODE_ID_SDMA0; else ret = UCODE_ID_SDMA1; break; case CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE: ret = UCODE_ID_CP_CE; break; case CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP: ret = UCODE_ID_CP_PFP; break; case CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME: ret = UCODE_ID_CP_ME; break; case CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1: ret = UCODE_ID_CP_MEC_JT1; break; case CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2: if (smumgr->chip_id == CHIP_STONEY) ret = UCODE_ID_CP_MEC_JT1; else ret = UCODE_ID_CP_MEC_JT2; break; case CZ_SCRATCH_ENTRY_UCODE_ID_GMCON_RENG: ret = UCODE_ID_GMCON_RENG; break; case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G: ret = UCODE_ID_RLC_G; break; case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH: ret = UCODE_ID_RLC_SCRATCH; break; case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM: ret = UCODE_ID_RLC_SRM_ARAM; break; case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM: ret = UCODE_ID_RLC_SRM_DRAM; break; case CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_ERAM: ret = UCODE_ID_DMCU_ERAM; break; case CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_IRAM: ret = UCODE_ID_DMCU_IRAM; break; case CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING: ret = TASK_ARG_INIT_MM_PWR_LOG; break; case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_HALT: case CZ_SCRATCH_ENTRY_DATA_ID_SYS_CLOCKGATING: case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_RING_REGS: case CZ_SCRATCH_ENTRY_DATA_ID_NONGFX_REINIT: case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_START: case CZ_SCRATCH_ENTRY_DATA_ID_IH_REGISTERS: ret = TASK_ARG_REG_MMIO; break; case CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE: ret = TASK_ARG_INIT_CLK_TABLE; break; } return ret; } static enum cgs_ucode_id cz_convert_fw_type_to_cgs(uint32_t fw_type) { enum cgs_ucode_id result = CGS_UCODE_ID_MAXIMUM; switch (fw_type) { case UCODE_ID_SDMA0: result = CGS_UCODE_ID_SDMA0; break; case UCODE_ID_SDMA1: result = CGS_UCODE_ID_SDMA1; break; case UCODE_ID_CP_CE: result = CGS_UCODE_ID_CP_CE; break; case UCODE_ID_CP_PFP: result = CGS_UCODE_ID_CP_PFP; break; case UCODE_ID_CP_ME: result = CGS_UCODE_ID_CP_ME; break; case UCODE_ID_CP_MEC_JT1: result = CGS_UCODE_ID_CP_MEC_JT1; break; case UCODE_ID_CP_MEC_JT2: result = CGS_UCODE_ID_CP_MEC_JT2; break; case UCODE_ID_RLC_G: result = CGS_UCODE_ID_RLC_G; break; default: break; } return result; } static int cz_smu_populate_single_scratch_task( struct pp_smumgr *smumgr, enum cz_scratch_entry fw_enum, uint8_t type, bool is_last) { uint8_t i; struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr; struct SMU_Task *task = &toc->tasks[cz_smu->toc_entry_used_count++]; task->type = type; task->arg = cz_translate_firmware_enum_to_arg(smumgr, fw_enum); task->next = is_last ? END_OF_TASK_LIST : cz_smu->toc_entry_used_count; for (i = 0; i < cz_smu->scratch_buffer_length; i++) if (cz_smu->scratch_buffer[i].firmware_ID == fw_enum) break; if (i >= cz_smu->scratch_buffer_length) { printk(KERN_ERR "[ powerplay ] Invalid Firmware Type\n"); return -EINVAL; } task->addr.low = cz_smu->scratch_buffer[i].mc_addr_low; task->addr.high = cz_smu->scratch_buffer[i].mc_addr_high; task->size_bytes = cz_smu->scratch_buffer[i].data_size; if (CZ_SCRATCH_ENTRY_DATA_ID_IH_REGISTERS == fw_enum) { struct cz_ih_meta_data *pIHReg_restore = (struct cz_ih_meta_data *)cz_smu->scratch_buffer[i].kaddr; pIHReg_restore->command = METADATA_CMD_MODE0 | METADATA_PERFORM_ON_LOAD; } return 0; } static int cz_smu_populate_single_ucode_load_task( struct pp_smumgr *smumgr, enum cz_scratch_entry fw_enum, bool is_last) { uint8_t i; struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr; struct SMU_Task *task = &toc->tasks[cz_smu->toc_entry_used_count++]; task->type = TASK_TYPE_UCODE_LOAD; task->arg = cz_translate_firmware_enum_to_arg(smumgr, fw_enum); task->next = is_last ? END_OF_TASK_LIST : cz_smu->toc_entry_used_count; for (i = 0; i < cz_smu->driver_buffer_length; i++) if (cz_smu->driver_buffer[i].firmware_ID == fw_enum) break; if (i >= cz_smu->driver_buffer_length) { printk(KERN_ERR "[ powerplay ] Invalid Firmware Type\n"); return -EINVAL; } task->addr.low = cz_smu->driver_buffer[i].mc_addr_low; task->addr.high = cz_smu->driver_buffer[i].mc_addr_high; task->size_bytes = cz_smu->driver_buffer[i].data_size; return 0; } static int cz_smu_construct_toc_for_rlc_aram_save(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; cz_smu->toc_entry_aram = cz_smu->toc_entry_used_count; cz_smu_populate_single_scratch_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM, TASK_TYPE_UCODE_SAVE, true); return 0; } static int cz_smu_initialize_toc_empty_job_list(struct pp_smumgr *smumgr) { int i; struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr; for (i = 0; i < NUM_JOBLIST_ENTRIES; i++) toc->JobList[i] = (uint8_t)IGNORE_JOB; return 0; } static int cz_smu_construct_toc_for_vddgfx_enter(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr; toc->JobList[JOB_GFX_SAVE] = (uint8_t)cz_smu->toc_entry_used_count; cz_smu_populate_single_scratch_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH, TASK_TYPE_UCODE_SAVE, false); cz_smu_populate_single_scratch_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM, TASK_TYPE_UCODE_SAVE, true); return 0; } static int cz_smu_construct_toc_for_vddgfx_exit(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr; toc->JobList[JOB_GFX_RESTORE] = (uint8_t)cz_smu->toc_entry_used_count; cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false); if (smumgr->chip_id == CHIP_STONEY) cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false); else cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G, false); /* populate scratch */ cz_smu_populate_single_scratch_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH, TASK_TYPE_UCODE_LOAD, false); cz_smu_populate_single_scratch_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM, TASK_TYPE_UCODE_LOAD, false); cz_smu_populate_single_scratch_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM, TASK_TYPE_UCODE_LOAD, true); return 0; } static int cz_smu_construct_toc_for_power_profiling( struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; cz_smu->toc_entry_power_profiling_index = cz_smu->toc_entry_used_count; cz_smu_populate_single_scratch_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING, TASK_TYPE_INITIALIZE, true); return 0; } static int cz_smu_construct_toc_for_bootup(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; cz_smu->toc_entry_initialize_index = cz_smu->toc_entry_used_count; cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0, false); if (smumgr->chip_id == CHIP_STONEY) cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0, false); else cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false); if (smumgr->chip_id == CHIP_STONEY) cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false); else cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2, false); cz_smu_populate_single_ucode_load_task(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G, true); return 0; } static int cz_smu_construct_toc_for_clock_table(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; cz_smu->toc_entry_clock_table = cz_smu->toc_entry_used_count; cz_smu_populate_single_scratch_task(smumgr, CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE, TASK_TYPE_INITIALIZE, true); return 0; } static int cz_smu_construct_toc(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; cz_smu->toc_entry_used_count = 0; cz_smu_initialize_toc_empty_job_list(smumgr); cz_smu_construct_toc_for_rlc_aram_save(smumgr); cz_smu_construct_toc_for_vddgfx_enter(smumgr); cz_smu_construct_toc_for_vddgfx_exit(smumgr); cz_smu_construct_toc_for_power_profiling(smumgr); cz_smu_construct_toc_for_bootup(smumgr); cz_smu_construct_toc_for_clock_table(smumgr); return 0; } static int cz_smu_populate_firmware_entries(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; uint32_t firmware_type; uint32_t i; int ret; enum cgs_ucode_id ucode_id; struct cgs_firmware_info info = {0}; cz_smu->driver_buffer_length = 0; for (i = 0; i < sizeof(firmware_list)/sizeof(*firmware_list); i++) { firmware_type = cz_translate_firmware_enum_to_arg(smumgr, firmware_list[i]); ucode_id = cz_convert_fw_type_to_cgs(firmware_type); ret = cgs_get_firmware_info(smumgr->device, ucode_id, &info); if (ret == 0) { cz_smu->driver_buffer[i].mc_addr_high = smu_upper_32_bits(info.mc_addr); cz_smu->driver_buffer[i].mc_addr_low = smu_lower_32_bits(info.mc_addr); cz_smu->driver_buffer[i].data_size = info.image_size; cz_smu->driver_buffer[i].firmware_ID = firmware_list[i]; cz_smu->driver_buffer_length++; } } return 0; } static int cz_smu_populate_single_scratch_entry( struct pp_smumgr *smumgr, enum cz_scratch_entry scratch_type, uint32_t ulsize_byte, struct cz_buffer_entry *entry) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; long long mc_addr = ((long long)(cz_smu->smu_buffer.mc_addr_high) << 32) | cz_smu->smu_buffer.mc_addr_low; uint32_t ulsize_aligned = SIZE_ALIGN_32(ulsize_byte); mc_addr += cz_smu->smu_buffer_used_bytes; entry->data_size = ulsize_byte; entry->kaddr = (char *) cz_smu->smu_buffer.kaddr + cz_smu->smu_buffer_used_bytes; entry->mc_addr_low = smu_lower_32_bits(mc_addr); entry->mc_addr_high = smu_upper_32_bits(mc_addr); entry->firmware_ID = scratch_type; cz_smu->smu_buffer_used_bytes += ulsize_aligned; return 0; } static int cz_download_pptable_settings(struct pp_smumgr *smumgr, void **table) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; unsigned long i; for (i = 0; i < cz_smu->scratch_buffer_length; i++) { if (cz_smu->scratch_buffer[i].firmware_ID == CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE) break; } *table = (struct SMU8_Fusion_ClkTable *)cz_smu->scratch_buffer[i].kaddr; cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_SetClkTableAddrHi, cz_smu->scratch_buffer[i].mc_addr_high); cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_SetClkTableAddrLo, cz_smu->scratch_buffer[i].mc_addr_low); cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_ExecuteJob, cz_smu->toc_entry_clock_table); cz_send_msg_to_smc(smumgr, PPSMC_MSG_ClkTableXferToDram); return 0; } static int cz_upload_pptable_settings(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; unsigned long i; for (i = 0; i < cz_smu->scratch_buffer_length; i++) { if (cz_smu->scratch_buffer[i].firmware_ID == CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE) break; } cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_SetClkTableAddrHi, cz_smu->scratch_buffer[i].mc_addr_high); cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_SetClkTableAddrLo, cz_smu->scratch_buffer[i].mc_addr_low); cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_ExecuteJob, cz_smu->toc_entry_clock_table); cz_send_msg_to_smc(smumgr, PPSMC_MSG_ClkTableXferToSmu); return 0; } static int cz_smu_init(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend; uint64_t mc_addr = 0; int ret = 0; cz_smu->toc_buffer.data_size = 4096; cz_smu->smu_buffer.data_size = ALIGN(UCODE_ID_RLC_SCRATCH_SIZE_BYTE, 32) + ALIGN(UCODE_ID_RLC_SRM_ARAM_SIZE_BYTE, 32) + ALIGN(UCODE_ID_RLC_SRM_DRAM_SIZE_BYTE, 32) + ALIGN(sizeof(struct SMU8_MultimediaPowerLogData), 32) + ALIGN(sizeof(struct SMU8_Fusion_ClkTable), 32); ret = smu_allocate_memory(smumgr->device, cz_smu->toc_buffer.data_size, CGS_GPU_MEM_TYPE__GART_CACHEABLE, PAGE_SIZE, &mc_addr, &cz_smu->toc_buffer.kaddr, &cz_smu->toc_buffer.handle); if (ret != 0) return -1; cz_smu->toc_buffer.mc_addr_high = smu_upper_32_bits(mc_addr); cz_smu->toc_buffer.mc_addr_low = smu_lower_32_bits(mc_addr); ret = smu_allocate_memory(smumgr->device, cz_smu->smu_buffer.data_size, CGS_GPU_MEM_TYPE__GART_CACHEABLE, PAGE_SIZE, &mc_addr, &cz_smu->smu_buffer.kaddr, &cz_smu->smu_buffer.handle); if (ret != 0) return -1; cz_smu->smu_buffer.mc_addr_high = smu_upper_32_bits(mc_addr); cz_smu->smu_buffer.mc_addr_low = smu_lower_32_bits(mc_addr); cz_smu_populate_firmware_entries(smumgr); if (0 != cz_smu_populate_single_scratch_entry(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH, UCODE_ID_RLC_SCRATCH_SIZE_BYTE, &cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) { printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n"); return -1; } if (0 != cz_smu_populate_single_scratch_entry(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM, UCODE_ID_RLC_SRM_ARAM_SIZE_BYTE, &cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) { printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n"); return -1; } if (0 != cz_smu_populate_single_scratch_entry(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM, UCODE_ID_RLC_SRM_DRAM_SIZE_BYTE, &cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) { printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n"); return -1; } if (0 != cz_smu_populate_single_scratch_entry(smumgr, CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING, sizeof(struct SMU8_MultimediaPowerLogData), &cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) { printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n"); return -1; } if (0 != cz_smu_populate_single_scratch_entry(smumgr, CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE, sizeof(struct SMU8_Fusion_ClkTable), &cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) { printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n"); return -1; } cz_smu_construct_toc(smumgr); return 0; } static int cz_smu_fini(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu; if (smumgr == NULL || smumgr->device == NULL) return -EINVAL; cz_smu = (struct cz_smumgr *)smumgr->backend; if (cz_smu) { cgs_free_gpu_mem(smumgr->device, cz_smu->toc_buffer.handle); cgs_free_gpu_mem(smumgr->device, cz_smu->smu_buffer.handle); kfree(cz_smu); kfree(smumgr); } return 0; } static const struct pp_smumgr_func cz_smu_funcs = { .smu_init = cz_smu_init, .smu_fini = cz_smu_fini, .start_smu = cz_start_smu, .check_fw_load_finish = cz_check_fw_load_finish, .request_smu_load_fw = NULL, .request_smu_load_specific_fw = NULL, .get_argument = cz_smum_get_argument, .send_msg_to_smc = cz_send_msg_to_smc, .send_msg_to_smc_with_parameter = cz_send_msg_to_smc_with_parameter, .download_pptable_settings = cz_download_pptable_settings, .upload_pptable_settings = cz_upload_pptable_settings, }; int cz_smum_init(struct pp_smumgr *smumgr) { struct cz_smumgr *cz_smu; cz_smu = kzalloc(sizeof(struct cz_smumgr), GFP_KERNEL); if (cz_smu == NULL) return -ENOMEM; smumgr->backend = cz_smu; smumgr->smumgr_funcs = &cz_smu_funcs; return 0; }