// SPDX-License-Identifier: GPL-2.0 /* * (C) COPYRIGHT 2018 ARM Limited. All rights reserved. * Author: James.Qian.Wang * */ #include #include #include #include #include #include #include #include #include "komeda_dev.h" #include "komeda_kms.h" void komeda_crtc_get_color_config(struct drm_crtc_state *crtc_st, u32 *color_depths, u32 *color_formats) { struct drm_connector *conn; struct drm_connector_state *conn_st; u32 conn_color_formats = ~0u; int i, min_bpc = 31, conn_bpc = 0; for_each_new_connector_in_state(crtc_st->state, conn, conn_st, i) { if (conn_st->crtc != crtc_st->crtc) continue; conn_bpc = conn->display_info.bpc ? conn->display_info.bpc : 8; conn_color_formats &= conn->display_info.color_formats; if (conn_bpc < min_bpc) min_bpc = conn_bpc; } /* connector doesn't config any color_format, use RGB444 as default */ if (!conn_color_formats) conn_color_formats = DRM_COLOR_FORMAT_RGB444; *color_depths = GENMASK(min_bpc, 0); *color_formats = conn_color_formats; } static void komeda_crtc_update_clock_ratio(struct komeda_crtc_state *kcrtc_st) { u64 pxlclk, aclk; if (!kcrtc_st->base.active) { kcrtc_st->clock_ratio = 0; return; } pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000ULL; aclk = komeda_crtc_get_aclk(kcrtc_st); kcrtc_st->clock_ratio = div64_u64(aclk << 32, pxlclk); } /** * komeda_crtc_atomic_check - build display output data flow * @crtc: DRM crtc * @state: the crtc state object * * crtc_atomic_check is the final check stage, so beside build a display data * pipeline according to the crtc_state, but still needs to release or disable * the unclaimed pipeline resources. * * RETURNS: * Zero for success or -errno */ static int komeda_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct komeda_crtc *kcrtc = to_kcrtc(crtc); struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(state); int err; if (drm_atomic_crtc_needs_modeset(state)) komeda_crtc_update_clock_ratio(kcrtc_st); if (state->active) { err = komeda_build_display_data_flow(kcrtc, kcrtc_st); if (err) return err; } /* release unclaimed pipeline resources */ err = komeda_release_unclaimed_resources(kcrtc->slave, kcrtc_st); if (err) return err; err = komeda_release_unclaimed_resources(kcrtc->master, kcrtc_st); if (err) return err; return 0; } /* For active a crtc, mainly need two parts of preparation * 1. adjust display operation mode. * 2. enable needed clk */ static int komeda_crtc_prepare(struct komeda_crtc *kcrtc) { struct komeda_dev *mdev = kcrtc->base.dev->dev_private; struct komeda_pipeline *master = kcrtc->master; struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(kcrtc->base.state); struct drm_display_mode *mode = &kcrtc_st->base.adjusted_mode; u32 new_mode; int err; mutex_lock(&mdev->lock); new_mode = mdev->dpmode | BIT(master->id); if (WARN_ON(new_mode == mdev->dpmode)) { err = 0; goto unlock; } err = mdev->funcs->change_opmode(mdev, new_mode); if (err) { DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,", mdev->dpmode, new_mode); goto unlock; } mdev->dpmode = new_mode; /* Only need to enable aclk on single display mode, but no need to * enable aclk it on dual display mode, since the dual mode always * switch from single display mode, the aclk already enabled, no need * to enable it again. */ if (new_mode != KOMEDA_MODE_DUAL_DISP) { err = clk_set_rate(mdev->aclk, komeda_crtc_get_aclk(kcrtc_st)); if (err) DRM_ERROR("failed to set aclk.\n"); err = clk_prepare_enable(mdev->aclk); if (err) DRM_ERROR("failed to enable aclk.\n"); } err = clk_set_rate(master->pxlclk, mode->crtc_clock * 1000); if (err) DRM_ERROR("failed to set pxlclk for pipe%d\n", master->id); err = clk_prepare_enable(master->pxlclk); if (err) DRM_ERROR("failed to enable pxl clk for pipe%d.\n", master->id); unlock: mutex_unlock(&mdev->lock); return err; } static int komeda_crtc_unprepare(struct komeda_crtc *kcrtc) { struct komeda_dev *mdev = kcrtc->base.dev->dev_private; struct komeda_pipeline *master = kcrtc->master; u32 new_mode; int err; mutex_lock(&mdev->lock); new_mode = mdev->dpmode & (~BIT(master->id)); if (WARN_ON(new_mode == mdev->dpmode)) { err = 0; goto unlock; } err = mdev->funcs->change_opmode(mdev, new_mode); if (err) { DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,", mdev->dpmode, new_mode); goto unlock; } mdev->dpmode = new_mode; clk_disable_unprepare(master->pxlclk); if (new_mode == KOMEDA_MODE_INACTIVE) clk_disable_unprepare(mdev->aclk); unlock: mutex_unlock(&mdev->lock); return err; } void komeda_crtc_handle_event(struct komeda_crtc *kcrtc, struct komeda_events *evts) { struct drm_crtc *crtc = &kcrtc->base; u32 events = evts->pipes[kcrtc->master->id]; if (events & KOMEDA_EVENT_VSYNC) drm_crtc_handle_vblank(crtc); if (events & KOMEDA_EVENT_EOW) { struct komeda_wb_connector *wb_conn = kcrtc->wb_conn; if (wb_conn) drm_writeback_signal_completion(&wb_conn->base, 0); else DRM_WARN("CRTC[%d]: EOW happen but no wb_connector.\n", drm_crtc_index(&kcrtc->base)); } /* will handle it together with the write back support */ if (events & KOMEDA_EVENT_EOW) DRM_DEBUG("EOW.\n"); if (events & KOMEDA_EVENT_FLIP) { unsigned long flags; struct drm_pending_vblank_event *event; spin_lock_irqsave(&crtc->dev->event_lock, flags); if (kcrtc->disable_done) { complete_all(kcrtc->disable_done); kcrtc->disable_done = NULL; } else if (crtc->state->event) { event = crtc->state->event; /* * Consume event before notifying drm core that flip * happened. */ crtc->state->event = NULL; drm_crtc_send_vblank_event(crtc, event); } else { DRM_WARN("CRTC[%d]: FLIP happen but no pending commit.\n", drm_crtc_index(&kcrtc->base)); } spin_unlock_irqrestore(&crtc->dev->event_lock, flags); } } static void komeda_crtc_do_flush(struct drm_crtc *crtc, struct drm_crtc_state *old) { struct komeda_crtc *kcrtc = to_kcrtc(crtc); struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc->state); struct komeda_dev *mdev = kcrtc->base.dev->dev_private; struct komeda_pipeline *master = kcrtc->master; struct komeda_pipeline *slave = kcrtc->slave; struct komeda_wb_connector *wb_conn = kcrtc->wb_conn; struct drm_connector_state *conn_st; DRM_DEBUG_ATOMIC("CRTC%d_FLUSH: active_pipes: 0x%x, affected: 0x%x.\n", drm_crtc_index(crtc), kcrtc_st->active_pipes, kcrtc_st->affected_pipes); /* step 1: update the pipeline/component state to HW */ if (has_bit(master->id, kcrtc_st->affected_pipes)) komeda_pipeline_update(master, old->state); if (slave && has_bit(slave->id, kcrtc_st->affected_pipes)) komeda_pipeline_update(slave, old->state); conn_st = wb_conn ? wb_conn->base.base.state : NULL; if (conn_st && conn_st->writeback_job) drm_writeback_queue_job(&wb_conn->base, conn_st); /* step 2: notify the HW to kickoff the update */ mdev->funcs->flush(mdev, master->id, kcrtc_st->active_pipes); } static void komeda_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_crtc_state *old) { komeda_crtc_prepare(to_kcrtc(crtc)); drm_crtc_vblank_on(crtc); WARN_ON(drm_crtc_vblank_get(crtc)); komeda_crtc_do_flush(crtc, old); } static void komeda_crtc_flush_and_wait_for_flip_done(struct komeda_crtc *kcrtc, struct completion *input_flip_done) { struct drm_device *drm = kcrtc->base.dev; struct komeda_dev *mdev = kcrtc->master->mdev; struct completion *flip_done; struct completion temp; int timeout; /* if caller doesn't send a flip_done, use a private flip_done */ if (input_flip_done) { flip_done = input_flip_done; } else { init_completion(&temp); kcrtc->disable_done = &temp; flip_done = &temp; } mdev->funcs->flush(mdev, kcrtc->master->id, 0); /* wait the flip take affect.*/ timeout = wait_for_completion_timeout(flip_done, HZ); if (timeout == 0) { DRM_ERROR("wait pipe%d flip done timeout\n", kcrtc->master->id); if (!input_flip_done) { unsigned long flags; spin_lock_irqsave(&drm->event_lock, flags); kcrtc->disable_done = NULL; spin_unlock_irqrestore(&drm->event_lock, flags); } } } static void komeda_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_crtc_state *old) { struct komeda_crtc *kcrtc = to_kcrtc(crtc); struct komeda_crtc_state *old_st = to_kcrtc_st(old); struct komeda_pipeline *master = kcrtc->master; struct komeda_pipeline *slave = kcrtc->slave; struct completion *disable_done; bool needs_phase2 = false; DRM_DEBUG_ATOMIC("CRTC%d_DISABLE: active_pipes: 0x%x, affected: 0x%x\n", drm_crtc_index(crtc), old_st->active_pipes, old_st->affected_pipes); if (slave && has_bit(slave->id, old_st->active_pipes)) komeda_pipeline_disable(slave, old->state); if (has_bit(master->id, old_st->active_pipes)) needs_phase2 = komeda_pipeline_disable(master, old->state); /* crtc_disable has two scenarios according to the state->active switch. * 1. active -> inactive * this commit is a disable commit. and the commit will be finished * or done after the disable operation. on this case we can directly * use the crtc->state->event to tracking the HW disable operation. * 2. active -> active * the crtc->commit is not for disable, but a modeset operation when * crtc is active, such commit actually has been completed by 3 * DRM operations: * crtc_disable, update_planes(crtc_flush), crtc_enable * so on this case the crtc->commit is for the whole process. * we can not use it for tracing the disable, we need a temporary * flip_done for tracing the disable. and crtc->state->event for * the crtc_enable operation. * That's also the reason why skip modeset commit in * komeda_crtc_atomic_flush() */ disable_done = (needs_phase2 || crtc->state->active) ? NULL : &crtc->state->commit->flip_done; /* wait phase 1 disable done */ komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done); /* phase 2 */ if (needs_phase2) { komeda_pipeline_disable(kcrtc->master, old->state); disable_done = crtc->state->active ? NULL : &crtc->state->commit->flip_done; komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done); } drm_crtc_vblank_put(crtc); drm_crtc_vblank_off(crtc); komeda_crtc_unprepare(kcrtc); } static void komeda_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old) { /* commit with modeset will be handled in enable/disable */ if (drm_atomic_crtc_needs_modeset(crtc->state)) return; komeda_crtc_do_flush(crtc, old); } /* Returns the minimum frequency of the aclk rate (main engine clock) in Hz */ static unsigned long komeda_calc_min_aclk_rate(struct komeda_crtc *kcrtc, unsigned long pxlclk) { /* Once dual-link one display pipeline drives two display outputs, * the aclk needs run on the double rate of pxlclk */ if (kcrtc->master->dual_link) return pxlclk * 2; else return pxlclk; } /* Get current aclk rate that specified by state */ unsigned long komeda_crtc_get_aclk(struct komeda_crtc_state *kcrtc_st) { struct drm_crtc *crtc = kcrtc_st->base.crtc; struct komeda_dev *mdev = crtc->dev->dev_private; unsigned long pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000; unsigned long min_aclk; min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), pxlclk); return clk_round_rate(mdev->aclk, min_aclk); } static enum drm_mode_status komeda_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *m) { struct komeda_dev *mdev = crtc->dev->dev_private; struct komeda_crtc *kcrtc = to_kcrtc(crtc); struct komeda_pipeline *master = kcrtc->master; unsigned long min_pxlclk, min_aclk; if (m->flags & DRM_MODE_FLAG_INTERLACE) return MODE_NO_INTERLACE; min_pxlclk = m->clock * 1000; if (master->dual_link) min_pxlclk /= 2; if (min_pxlclk != clk_round_rate(master->pxlclk, min_pxlclk)) { DRM_DEBUG_ATOMIC("pxlclk doesn't support %lu Hz\n", min_pxlclk); return MODE_NOCLOCK; } min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), min_pxlclk); if (clk_round_rate(mdev->aclk, min_aclk) < min_aclk) { DRM_DEBUG_ATOMIC("engine clk can't satisfy the requirement of %s-clk: %lu.\n", m->name, min_pxlclk); return MODE_CLOCK_HIGH; } return MODE_OK; } static bool komeda_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *m, struct drm_display_mode *adjusted_mode) { struct komeda_crtc *kcrtc = to_kcrtc(crtc); unsigned long clk_rate; drm_mode_set_crtcinfo(adjusted_mode, 0); /* In dual link half the horizontal settings */ if (kcrtc->master->dual_link) { adjusted_mode->crtc_clock /= 2; adjusted_mode->crtc_hdisplay /= 2; adjusted_mode->crtc_hsync_start /= 2; adjusted_mode->crtc_hsync_end /= 2; adjusted_mode->crtc_htotal /= 2; } clk_rate = adjusted_mode->crtc_clock * 1000; /* crtc_clock will be used as the komeda output pixel clock */ adjusted_mode->crtc_clock = clk_round_rate(kcrtc->master->pxlclk, clk_rate) / 1000; return true; } static const struct drm_crtc_helper_funcs komeda_crtc_helper_funcs = { .atomic_check = komeda_crtc_atomic_check, .atomic_flush = komeda_crtc_atomic_flush, .atomic_enable = komeda_crtc_atomic_enable, .atomic_disable = komeda_crtc_atomic_disable, .mode_valid = komeda_crtc_mode_valid, .mode_fixup = komeda_crtc_mode_fixup, }; static void komeda_crtc_reset(struct drm_crtc *crtc) { struct komeda_crtc_state *state; if (crtc->state) __drm_atomic_helper_crtc_destroy_state(crtc->state); kfree(to_kcrtc_st(crtc->state)); crtc->state = NULL; state = kzalloc(sizeof(*state), GFP_KERNEL); if (state) { crtc->state = &state->base; crtc->state->crtc = crtc; } } static struct drm_crtc_state * komeda_crtc_atomic_duplicate_state(struct drm_crtc *crtc) { struct komeda_crtc_state *old = to_kcrtc_st(crtc->state); struct komeda_crtc_state *new; new = kzalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &new->base); new->affected_pipes = old->active_pipes; new->clock_ratio = old->clock_ratio; new->max_slave_zorder = old->max_slave_zorder; return &new->base; } static void komeda_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { __drm_atomic_helper_crtc_destroy_state(state); kfree(to_kcrtc_st(state)); } static int komeda_crtc_vblank_enable(struct drm_crtc *crtc) { struct komeda_dev *mdev = crtc->dev->dev_private; struct komeda_crtc *kcrtc = to_kcrtc(crtc); mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, true); return 0; } static void komeda_crtc_vblank_disable(struct drm_crtc *crtc) { struct komeda_dev *mdev = crtc->dev->dev_private; struct komeda_crtc *kcrtc = to_kcrtc(crtc); mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, false); } static const struct drm_crtc_funcs komeda_crtc_funcs = { .gamma_set = drm_atomic_helper_legacy_gamma_set, .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .reset = komeda_crtc_reset, .atomic_duplicate_state = komeda_crtc_atomic_duplicate_state, .atomic_destroy_state = komeda_crtc_atomic_destroy_state, .enable_vblank = komeda_crtc_vblank_enable, .disable_vblank = komeda_crtc_vblank_disable, }; int komeda_kms_setup_crtcs(struct komeda_kms_dev *kms, struct komeda_dev *mdev) { struct komeda_crtc *crtc; struct komeda_pipeline *master; char str[16]; int i; kms->n_crtcs = 0; for (i = 0; i < mdev->n_pipelines; i++) { crtc = &kms->crtcs[kms->n_crtcs]; master = mdev->pipelines[i]; crtc->master = master; crtc->slave = komeda_pipeline_get_slave(master); if (crtc->slave) sprintf(str, "pipe-%d", crtc->slave->id); else sprintf(str, "None"); DRM_INFO("CRTC-%d: master(pipe-%d) slave(%s).\n", kms->n_crtcs, master->id, str); kms->n_crtcs++; } return 0; } static struct drm_plane * get_crtc_primary(struct komeda_kms_dev *kms, struct komeda_crtc *crtc) { struct komeda_plane *kplane; struct drm_plane *plane; drm_for_each_plane(plane, &kms->base) { if (plane->type != DRM_PLANE_TYPE_PRIMARY) continue; kplane = to_kplane(plane); /* only master can be primary */ if (kplane->layer->base.pipeline == crtc->master) return plane; } return NULL; } static int komeda_crtc_add(struct komeda_kms_dev *kms, struct komeda_crtc *kcrtc) { struct drm_crtc *crtc = &kcrtc->base; int err; err = drm_crtc_init_with_planes(&kms->base, crtc, get_crtc_primary(kms, kcrtc), NULL, &komeda_crtc_funcs, NULL); if (err) return err; drm_crtc_helper_add(crtc, &komeda_crtc_helper_funcs); drm_crtc_vblank_reset(crtc); crtc->port = kcrtc->master->of_output_port; return err; } int komeda_kms_add_crtcs(struct komeda_kms_dev *kms, struct komeda_dev *mdev) { int i, err; for (i = 0; i < kms->n_crtcs; i++) { err = komeda_crtc_add(kms, &kms->crtcs[i]); if (err) return err; } return 0; }