/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include "cdv_device.h" #include "intel_bios.h" #include "power.h" #include "psb_drv.h" #include "psb_intel_drv.h" #include "psb_intel_reg.h" static void cdv_intel_crt_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; u32 temp, reg; reg = ADPA; temp = REG_READ(reg); temp &= ~(ADPA_HSYNC_CNTL_DISABLE | ADPA_VSYNC_CNTL_DISABLE); temp &= ~ADPA_DAC_ENABLE; switch (mode) { case DRM_MODE_DPMS_ON: temp |= ADPA_DAC_ENABLE; break; case DRM_MODE_DPMS_STANDBY: temp |= ADPA_DAC_ENABLE | ADPA_HSYNC_CNTL_DISABLE; break; case DRM_MODE_DPMS_SUSPEND: temp |= ADPA_DAC_ENABLE | ADPA_VSYNC_CNTL_DISABLE; break; case DRM_MODE_DPMS_OFF: temp |= ADPA_HSYNC_CNTL_DISABLE | ADPA_VSYNC_CNTL_DISABLE; break; } REG_WRITE(reg, temp); } static enum drm_mode_status cdv_intel_crt_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; /* The lowest clock for CDV is 20000KHz */ if (mode->clock < 20000) return MODE_CLOCK_LOW; /* The max clock for CDV is 355 instead of 400 */ if (mode->clock > 355000) return MODE_CLOCK_HIGH; return MODE_OK; } static void cdv_intel_crt_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_crtc *crtc = encoder->crtc; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int dpll_md_reg; u32 adpa, dpll_md; u32 adpa_reg; if (gma_crtc->pipe == 0) dpll_md_reg = DPLL_A_MD; else dpll_md_reg = DPLL_B_MD; adpa_reg = ADPA; /* * Disable separate mode multiplier used when cloning SDVO to CRT * XXX this needs to be adjusted when we really are cloning */ { dpll_md = REG_READ(dpll_md_reg); REG_WRITE(dpll_md_reg, dpll_md & ~DPLL_MD_UDI_MULTIPLIER_MASK); } adpa = 0; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) adpa |= ADPA_HSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) adpa |= ADPA_VSYNC_ACTIVE_HIGH; if (gma_crtc->pipe == 0) adpa |= ADPA_PIPE_A_SELECT; else adpa |= ADPA_PIPE_B_SELECT; REG_WRITE(adpa_reg, adpa); } /* * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect CRT presence. * * \return true if CRT is connected. * \return false if CRT is disconnected. */ static bool cdv_intel_crt_detect_hotplug(struct drm_connector *connector, bool force) { struct drm_device *dev = connector->dev; u32 hotplug_en; int i, tries = 0, ret = false; u32 orig; /* * On a CDV thep, CRT detect sequence need to be done twice * to get a reliable result. */ tries = 2; orig = hotplug_en = REG_READ(PORT_HOTPLUG_EN); hotplug_en &= ~(CRT_HOTPLUG_DETECT_MASK); hotplug_en |= CRT_HOTPLUG_FORCE_DETECT; hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; for (i = 0; i < tries ; i++) { unsigned long timeout; /* turn on the FORCE_DETECT */ REG_WRITE(PORT_HOTPLUG_EN, hotplug_en); timeout = jiffies + msecs_to_jiffies(1000); /* wait for FORCE_DETECT to go off */ do { if (!(REG_READ(PORT_HOTPLUG_EN) & CRT_HOTPLUG_FORCE_DETECT)) break; msleep(1); } while (time_after(timeout, jiffies)); } if ((REG_READ(PORT_HOTPLUG_STAT) & CRT_HOTPLUG_MONITOR_MASK) != CRT_HOTPLUG_MONITOR_NONE) ret = true; /* clear the interrupt we just generated, if any */ REG_WRITE(PORT_HOTPLUG_STAT, CRT_HOTPLUG_INT_STATUS); /* and put the bits back */ REG_WRITE(PORT_HOTPLUG_EN, orig); return ret; } static enum drm_connector_status cdv_intel_crt_detect( struct drm_connector *connector, bool force) { if (cdv_intel_crt_detect_hotplug(connector, force)) return connector_status_connected; else return connector_status_disconnected; } static void cdv_intel_crt_destroy(struct drm_connector *connector) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); psb_intel_i2c_destroy(gma_encoder->ddc_bus); drm_connector_unregister(connector); drm_connector_cleanup(connector); kfree(connector); } static int cdv_intel_crt_get_modes(struct drm_connector *connector) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); return psb_intel_ddc_get_modes(connector, &gma_encoder->ddc_bus->adapter); } static int cdv_intel_crt_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t value) { return 0; } /* * Routines for controlling stuff on the analog port */ static const struct drm_encoder_helper_funcs cdv_intel_crt_helper_funcs = { .dpms = cdv_intel_crt_dpms, .prepare = gma_encoder_prepare, .commit = gma_encoder_commit, .mode_set = cdv_intel_crt_mode_set, }; static const struct drm_connector_funcs cdv_intel_crt_connector_funcs = { .dpms = drm_helper_connector_dpms, .detect = cdv_intel_crt_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = cdv_intel_crt_destroy, .set_property = cdv_intel_crt_set_property, }; static const struct drm_connector_helper_funcs cdv_intel_crt_connector_helper_funcs = { .mode_valid = cdv_intel_crt_mode_valid, .get_modes = cdv_intel_crt_get_modes, .best_encoder = gma_best_encoder, }; void cdv_intel_crt_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev) { struct gma_connector *gma_connector; struct gma_encoder *gma_encoder; struct drm_connector *connector; struct drm_encoder *encoder; gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL); if (!gma_encoder) return; gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL); if (!gma_connector) goto failed_connector; connector = &gma_connector->base; connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_init(dev, connector, &cdv_intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA); encoder = &gma_encoder->base; drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_DAC); gma_connector_attach_encoder(gma_connector, gma_encoder); /* Set up the DDC bus. */ gma_encoder->ddc_bus = psb_intel_i2c_create(dev, GPIOA, "CRTDDC_A"); if (!gma_encoder->ddc_bus) { dev_printk(KERN_ERR, dev->dev, "DDC bus registration failed.\n"); goto failed_ddc; } gma_encoder->type = INTEL_OUTPUT_ANALOG; connector->interlace_allowed = 0; connector->doublescan_allowed = 0; drm_encoder_helper_add(encoder, &cdv_intel_crt_helper_funcs); drm_connector_helper_add(connector, &cdv_intel_crt_connector_helper_funcs); drm_connector_register(connector); return; failed_ddc: drm_encoder_cleanup(&gma_encoder->base); drm_connector_cleanup(&gma_connector->base); kfree(gma_connector); failed_connector: kfree(gma_encoder); return; }