/* * SPDX-License-Identifier: MIT * * Copyright © 2016 Intel Corporation */ #include #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "huge_gem_object.h" #include "i915_selftest.h" #include "selftests/igt_flush_test.h" struct tile { unsigned int width; unsigned int height; unsigned int stride; unsigned int size; unsigned int tiling; unsigned int swizzle; }; static u64 swizzle_bit(unsigned int bit, u64 offset) { return (offset & BIT_ULL(bit)) >> (bit - 6); } static u64 tiled_offset(const struct tile *tile, u64 v) { u64 x, y; if (tile->tiling == I915_TILING_NONE) return v; y = div64_u64_rem(v, tile->stride, &x); v = div64_u64_rem(y, tile->height, &y) * tile->stride * tile->height; if (tile->tiling == I915_TILING_X) { v += y * tile->width; v += div64_u64_rem(x, tile->width, &x) << tile->size; v += x; } else if (tile->width == 128) { const unsigned int ytile_span = 16; const unsigned int ytile_height = 512; v += y * ytile_span; v += div64_u64_rem(x, ytile_span, &x) * ytile_height; v += x; } else { const unsigned int ytile_span = 32; const unsigned int ytile_height = 256; v += y * ytile_span; v += div64_u64_rem(x, ytile_span, &x) * ytile_height; v += x; } switch (tile->swizzle) { case I915_BIT_6_SWIZZLE_9: v ^= swizzle_bit(9, v); break; case I915_BIT_6_SWIZZLE_9_10: v ^= swizzle_bit(9, v) ^ swizzle_bit(10, v); break; case I915_BIT_6_SWIZZLE_9_11: v ^= swizzle_bit(9, v) ^ swizzle_bit(11, v); break; case I915_BIT_6_SWIZZLE_9_10_11: v ^= swizzle_bit(9, v) ^ swizzle_bit(10, v) ^ swizzle_bit(11, v); break; } return v; } static int check_partial_mapping(struct drm_i915_gem_object *obj, const struct tile *tile, unsigned long end_time) { const unsigned int nreal = obj->scratch / PAGE_SIZE; const unsigned long npages = obj->base.size / PAGE_SIZE; struct i915_vma *vma; unsigned long page; int err; if (igt_timeout(end_time, "%s: timed out before tiling=%d stride=%d\n", __func__, tile->tiling, tile->stride)) return -EINTR; err = i915_gem_object_set_tiling(obj, tile->tiling, tile->stride); if (err) { pr_err("Failed to set tiling mode=%u, stride=%u, err=%d\n", tile->tiling, tile->stride, err); return err; } GEM_BUG_ON(i915_gem_object_get_tiling(obj) != tile->tiling); GEM_BUG_ON(i915_gem_object_get_stride(obj) != tile->stride); i915_gem_object_lock(obj); err = i915_gem_object_set_to_gtt_domain(obj, true); i915_gem_object_unlock(obj); if (err) { pr_err("Failed to flush to GTT write domain; err=%d\n", err); return err; } for_each_prime_number_from(page, 1, npages) { struct i915_ggtt_view view = compute_partial_view(obj, page, MIN_CHUNK_PAGES); u32 __iomem *io; struct page *p; unsigned int n; u64 offset; u32 *cpu; GEM_BUG_ON(view.partial.size > nreal); cond_resched(); vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); if (IS_ERR(vma)) { pr_err("Failed to pin partial view: offset=%lu; err=%d\n", page, (int)PTR_ERR(vma)); return PTR_ERR(vma); } n = page - view.partial.offset; GEM_BUG_ON(n >= view.partial.size); io = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(io)) { pr_err("Failed to iomap partial view: offset=%lu; err=%d\n", page, (int)PTR_ERR(io)); return PTR_ERR(io); } iowrite32(page, io + n * PAGE_SIZE / sizeof(*io)); i915_vma_unpin_iomap(vma); offset = tiled_offset(tile, page << PAGE_SHIFT); if (offset >= obj->base.size) continue; intel_gt_flush_ggtt_writes(&to_i915(obj->base.dev)->gt); p = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT); cpu = kmap(p) + offset_in_page(offset); drm_clflush_virt_range(cpu, sizeof(*cpu)); if (*cpu != (u32)page) { pr_err("Partial view for %lu [%u] (offset=%llu, size=%u [%llu, row size %u], fence=%d, tiling=%d, stride=%d) misalignment, expected write to page (%llu + %u [0x%llx]) of 0x%x, found 0x%x\n", page, n, view.partial.offset, view.partial.size, vma->size >> PAGE_SHIFT, tile->tiling ? tile_row_pages(obj) : 0, vma->fence ? vma->fence->id : -1, tile->tiling, tile->stride, offset >> PAGE_SHIFT, (unsigned int)offset_in_page(offset), offset, (u32)page, *cpu); err = -EINVAL; } *cpu = 0; drm_clflush_virt_range(cpu, sizeof(*cpu)); kunmap(p); if (err) return err; i915_vma_destroy(vma); } return 0; } static int igt_partial_tiling(void *arg) { const unsigned int nreal = 1 << 12; /* largest tile row x2 */ struct drm_i915_private *i915 = arg; struct drm_i915_gem_object *obj; intel_wakeref_t wakeref; int tiling; int err; /* We want to check the page mapping and fencing of a large object * mmapped through the GTT. The object we create is larger than can * possibly be mmaped as a whole, and so we must use partial GGTT vma. * We then check that a write through each partial GGTT vma ends up * in the right set of pages within the object, and with the expected * tiling, which we verify by manual swizzling. */ obj = huge_gem_object(i915, nreal << PAGE_SHIFT, (1 + next_prime_number(i915->ggtt.vm.total >> PAGE_SHIFT)) << PAGE_SHIFT); if (IS_ERR(obj)) return PTR_ERR(obj); err = i915_gem_object_pin_pages(obj); if (err) { pr_err("Failed to allocate %u pages (%lu total), err=%d\n", nreal, obj->base.size / PAGE_SIZE, err); goto out; } mutex_lock(&i915->drm.struct_mutex); wakeref = intel_runtime_pm_get(&i915->runtime_pm); if (1) { IGT_TIMEOUT(end); struct tile tile; tile.height = 1; tile.width = 1; tile.size = 0; tile.stride = 0; tile.swizzle = I915_BIT_6_SWIZZLE_NONE; tile.tiling = I915_TILING_NONE; err = check_partial_mapping(obj, &tile, end); if (err && err != -EINTR) goto out_unlock; } for (tiling = I915_TILING_X; tiling <= I915_TILING_Y; tiling++) { IGT_TIMEOUT(end); unsigned int max_pitch; unsigned int pitch; struct tile tile; if (i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) /* * The swizzling pattern is actually unknown as it * varies based on physical address of each page. * See i915_gem_detect_bit_6_swizzle(). */ break; tile.tiling = tiling; switch (tiling) { case I915_TILING_X: tile.swizzle = i915->mm.bit_6_swizzle_x; break; case I915_TILING_Y: tile.swizzle = i915->mm.bit_6_swizzle_y; break; } GEM_BUG_ON(tile.swizzle == I915_BIT_6_SWIZZLE_UNKNOWN); if (tile.swizzle == I915_BIT_6_SWIZZLE_9_17 || tile.swizzle == I915_BIT_6_SWIZZLE_9_10_17) continue; if (INTEL_GEN(i915) <= 2) { tile.height = 16; tile.width = 128; tile.size = 11; } else if (tile.tiling == I915_TILING_Y && HAS_128_BYTE_Y_TILING(i915)) { tile.height = 32; tile.width = 128; tile.size = 12; } else { tile.height = 8; tile.width = 512; tile.size = 12; } if (INTEL_GEN(i915) < 4) max_pitch = 8192 / tile.width; else if (INTEL_GEN(i915) < 7) max_pitch = 128 * I965_FENCE_MAX_PITCH_VAL / tile.width; else max_pitch = 128 * GEN7_FENCE_MAX_PITCH_VAL / tile.width; for (pitch = max_pitch; pitch; pitch >>= 1) { tile.stride = tile.width * pitch; err = check_partial_mapping(obj, &tile, end); if (err == -EINTR) goto next_tiling; if (err) goto out_unlock; if (pitch > 2 && INTEL_GEN(i915) >= 4) { tile.stride = tile.width * (pitch - 1); err = check_partial_mapping(obj, &tile, end); if (err == -EINTR) goto next_tiling; if (err) goto out_unlock; } if (pitch < max_pitch && INTEL_GEN(i915) >= 4) { tile.stride = tile.width * (pitch + 1); err = check_partial_mapping(obj, &tile, end); if (err == -EINTR) goto next_tiling; if (err) goto out_unlock; } } if (INTEL_GEN(i915) >= 4) { for_each_prime_number(pitch, max_pitch) { tile.stride = tile.width * pitch; err = check_partial_mapping(obj, &tile, end); if (err == -EINTR) goto next_tiling; if (err) goto out_unlock; } } next_tiling: ; } out_unlock: intel_runtime_pm_put(&i915->runtime_pm, wakeref); mutex_unlock(&i915->drm.struct_mutex); i915_gem_object_unpin_pages(obj); out: i915_gem_object_put(obj); return err; } static int make_obj_busy(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct intel_engine_cs *engine; enum intel_engine_id id; struct i915_vma *vma; int err; vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); if (IS_ERR(vma)) return PTR_ERR(vma); err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) return err; for_each_engine(engine, i915, id) { struct i915_request *rq; rq = i915_request_create(engine->kernel_context); if (IS_ERR(rq)) { i915_vma_unpin(vma); return PTR_ERR(rq); } i915_vma_lock(vma); err = i915_request_await_object(rq, vma->obj, true); if (err == 0) err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); i915_vma_unlock(vma); i915_request_add(rq); } i915_vma_unpin(vma); i915_gem_object_put(obj); /* leave it only alive via its active ref */ return err; } static bool assert_mmap_offset(struct drm_i915_private *i915, unsigned long size, int expected) { struct drm_i915_gem_object *obj; int err; obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) return PTR_ERR(obj); err = create_mmap_offset(obj); i915_gem_object_put(obj); return err == expected; } static void disable_retire_worker(struct drm_i915_private *i915) { i915_gem_driver_unregister__shrinker(i915); intel_gt_pm_get(&i915->gt); cancel_delayed_work_sync(&i915->gem.retire_work); flush_work(&i915->gem.idle_work); } static void restore_retire_worker(struct drm_i915_private *i915) { intel_gt_pm_put(&i915->gt); mutex_lock(&i915->drm.struct_mutex); igt_flush_test(i915, I915_WAIT_LOCKED); mutex_unlock(&i915->drm.struct_mutex); i915_gem_driver_register__shrinker(i915); } static void mmap_offset_lock(struct drm_i915_private *i915) __acquires(&i915->drm.vma_offset_manager->vm_lock) { write_lock(&i915->drm.vma_offset_manager->vm_lock); } static void mmap_offset_unlock(struct drm_i915_private *i915) __releases(&i915->drm.vma_offset_manager->vm_lock) { write_unlock(&i915->drm.vma_offset_manager->vm_lock); } static int igt_mmap_offset_exhaustion(void *arg) { struct drm_i915_private *i915 = arg; struct drm_mm *mm = &i915->drm.vma_offset_manager->vm_addr_space_mm; struct drm_i915_gem_object *obj; struct drm_mm_node resv, *hole; u64 hole_start, hole_end; int loop, err; /* Disable background reaper */ disable_retire_worker(i915); GEM_BUG_ON(!i915->gt.awake); /* Trim the device mmap space to only a page */ memset(&resv, 0, sizeof(resv)); drm_mm_for_each_hole(hole, mm, hole_start, hole_end) { resv.start = hole_start; resv.size = hole_end - hole_start - 1; /* PAGE_SIZE units */ mmap_offset_lock(i915); err = drm_mm_reserve_node(mm, &resv); mmap_offset_unlock(i915); if (err) { pr_err("Failed to trim VMA manager, err=%d\n", err); goto out_park; } break; } /* Just fits! */ if (!assert_mmap_offset(i915, PAGE_SIZE, 0)) { pr_err("Unable to insert object into single page hole\n"); err = -EINVAL; goto out; } /* Too large */ if (!assert_mmap_offset(i915, 2 * PAGE_SIZE, -ENOSPC)) { pr_err("Unexpectedly succeeded in inserting too large object into single page hole\n"); err = -EINVAL; goto out; } /* Fill the hole, further allocation attempts should then fail */ obj = i915_gem_object_create_internal(i915, PAGE_SIZE); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out; } err = create_mmap_offset(obj); if (err) { pr_err("Unable to insert object into reclaimed hole\n"); goto err_obj; } if (!assert_mmap_offset(i915, PAGE_SIZE, -ENOSPC)) { pr_err("Unexpectedly succeeded in inserting object into no holes!\n"); err = -EINVAL; goto err_obj; } i915_gem_object_put(obj); /* Now fill with busy dead objects that we expect to reap */ for (loop = 0; loop < 3; loop++) { if (intel_gt_is_wedged(&i915->gt)) break; obj = i915_gem_object_create_internal(i915, PAGE_SIZE); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out; } mutex_lock(&i915->drm.struct_mutex); err = make_obj_busy(obj); mutex_unlock(&i915->drm.struct_mutex); if (err) { pr_err("[loop %d] Failed to busy the object\n", loop); goto err_obj; } } out: mmap_offset_lock(i915); drm_mm_remove_node(&resv); mmap_offset_unlock(i915); out_park: restore_retire_worker(i915); return err; err_obj: i915_gem_object_put(obj); goto out; } int i915_gem_mman_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_partial_tiling), SUBTEST(igt_mmap_offset_exhaustion), }; return i915_subtests(tests, i915); }