/* * SPDX-License-Identifier: MIT * * Copyright © 2019 Intel Corporation */ #include #include "i915_drv.h" #include "i915_globals.h" #include "i915_params.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" #include "intel_llc.h" #include "intel_pm.h" #include "intel_rc6.h" #include "intel_rps.h" #include "intel_wakeref.h" static void user_forcewake(struct intel_gt *gt, bool suspend) { int count = atomic_read(>->user_wakeref); /* Inside suspend/resume so single threaded, no races to worry about. */ if (likely(!count)) return; intel_gt_pm_get(gt); if (suspend) { GEM_BUG_ON(count > atomic_read(>->wakeref.count)); atomic_sub(count, >->wakeref.count); } else { atomic_add(count, >->wakeref.count); } intel_gt_pm_put(gt); } static int __gt_unpark(struct intel_wakeref *wf) { struct intel_gt *gt = container_of(wf, typeof(*gt), wakeref); struct drm_i915_private *i915 = gt->i915; GEM_TRACE("\n"); i915_globals_unpark(); /* * It seems that the DMC likes to transition between the DC states a lot * when there are no connected displays (no active power domains) during * command submission. * * This activity has negative impact on the performance of the chip with * huge latencies observed in the interrupt handler and elsewhere. * * Work around it by grabbing a GT IRQ power domain whilst there is any * GT activity, preventing any DC state transitions. */ gt->awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ); GEM_BUG_ON(!gt->awake); if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL); intel_rps_unpark(>->rps); i915_pmu_gt_unparked(i915); intel_gt_unpark_requests(gt); return 0; } static int __gt_park(struct intel_wakeref *wf) { struct intel_gt *gt = container_of(wf, typeof(*gt), wakeref); intel_wakeref_t wakeref = fetch_and_zero(>->awake); struct drm_i915_private *i915 = gt->i915; GEM_TRACE("\n"); intel_gt_park_requests(gt); i915_vma_parked(gt); i915_pmu_gt_parked(i915); intel_rps_park(>->rps); /* Everything switched off, flush any residual interrupt just in case */ intel_synchronize_irq(i915); if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) { intel_rc6_ctx_wa_check(&i915->gt.rc6); intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL); } GEM_BUG_ON(!wakeref); intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref); i915_globals_park(); return 0; } static const struct intel_wakeref_ops wf_ops = { .get = __gt_unpark, .put = __gt_park, }; void intel_gt_pm_init_early(struct intel_gt *gt) { intel_wakeref_init(>->wakeref, gt->uncore->rpm, &wf_ops); } void intel_gt_pm_init(struct intel_gt *gt) { /* * Enabling power-management should be "self-healing". If we cannot * enable a feature, simply leave it disabled with a notice to the * user. */ intel_rc6_init(>->rc6); intel_rps_init(>->rps); } static bool reset_engines(struct intel_gt *gt) { if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) return false; return __intel_gt_reset(gt, ALL_ENGINES) == 0; } /** * intel_gt_sanitize: called after the GPU has lost power * @gt: the i915 GT container * @force: ignore a failed reset and sanitize engine state anyway * * Anytime we reset the GPU, either with an explicit GPU reset or through a * PCI power cycle, the GPU loses state and we must reset our state tracking * to match. Note that calling intel_gt_sanitize() if the GPU has not * been reset results in much confusion! */ void intel_gt_sanitize(struct intel_gt *gt, bool force) { struct intel_engine_cs *engine; enum intel_engine_id id; intel_wakeref_t wakeref; GEM_TRACE("force:%s\n", yesno(force)); /* Use a raw wakeref to avoid calling intel_display_power_get early */ wakeref = intel_runtime_pm_get(gt->uncore->rpm); intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); /* * As we have just resumed the machine and woken the device up from * deep PCI sleep (presumably D3_cold), assume the HW has been reset * back to defaults, recovering from whatever wedged state we left it * in and so worth trying to use the device once more. */ if (intel_gt_is_wedged(gt)) intel_gt_unset_wedged(gt); intel_uc_sanitize(>->uc); for_each_engine(engine, gt, id) if (engine->reset.prepare) engine->reset.prepare(engine); intel_uc_reset_prepare(>->uc); if (reset_engines(gt) || force) { for_each_engine(engine, gt, id) __intel_engine_reset(engine, false); } for_each_engine(engine, gt, id) if (engine->reset.finish) engine->reset.finish(engine); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); intel_runtime_pm_put(gt->uncore->rpm, wakeref); } void intel_gt_pm_fini(struct intel_gt *gt) { intel_rc6_fini(>->rc6); } int intel_gt_resume(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; GEM_TRACE("\n"); /* * After resume, we may need to poke into the pinned kernel * contexts to paper over any damage caused by the sudden suspend. * Only the kernel contexts should remain pinned over suspend, * allowing us to fixup the user contexts on their first pin. */ intel_gt_pm_get(gt); intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); intel_rc6_sanitize(>->rc6); intel_rps_enable(>->rps); intel_llc_enable(>->llc); for_each_engine(engine, gt, id) { struct intel_context *ce; intel_engine_pm_get(engine); ce = engine->kernel_context; if (ce) { GEM_BUG_ON(!intel_context_is_pinned(ce)); ce->ops->reset(ce); } engine->serial++; /* kernel context lost */ err = engine->resume(engine); intel_engine_pm_put(engine); if (err) { dev_err(gt->i915->drm.dev, "Failed to restart %s (%d)\n", engine->name, err); break; } } intel_rc6_enable(>->rc6); intel_uc_resume(>->uc); user_forcewake(gt, false); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); intel_gt_pm_put(gt); return err; } static void wait_for_suspend(struct intel_gt *gt) { if (!intel_gt_pm_is_awake(gt)) return; if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { /* * Forcibly cancel outstanding work and leave * the gpu quiet. */ intel_gt_set_wedged(gt); } intel_gt_pm_wait_for_idle(gt); } void intel_gt_suspend_prepare(struct intel_gt *gt) { user_forcewake(gt, true); wait_for_suspend(gt); intel_uc_suspend(>->uc); } static suspend_state_t pm_suspend_target(void) { #if IS_ENABLED(CONFIG_SUSPEND) && IS_ENABLED(CONFIG_PM_SLEEP) return pm_suspend_target_state; #else return PM_SUSPEND_TO_IDLE; #endif } void intel_gt_suspend_late(struct intel_gt *gt) { intel_wakeref_t wakeref; /* We expect to be idle already; but also want to be independent */ wait_for_suspend(gt); /* * On disabling the device, we want to turn off HW access to memory * that we no longer own. * * However, not all suspend-states disable the device. S0 (s2idle) * is effectively runtime-suspend, the device is left powered on * but needs to be put into a low power state. We need to keep * powermanagement enabled, but we also retain system state and so * it remains safe to keep on using our allocated memory. */ if (pm_suspend_target() == PM_SUSPEND_TO_IDLE) return; with_intel_runtime_pm(gt->uncore->rpm, wakeref) { intel_rps_disable(>->rps); intel_rc6_disable(>->rc6); intel_llc_disable(>->llc); } intel_gt_sanitize(gt, false); GEM_TRACE("\n"); } void intel_gt_runtime_suspend(struct intel_gt *gt) { intel_uc_runtime_suspend(>->uc); GEM_TRACE("\n"); } int intel_gt_runtime_resume(struct intel_gt *gt) { GEM_TRACE("\n"); intel_gt_init_swizzling(gt); return intel_uc_runtime_resume(>->uc); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_gt_pm.c" #endif