/* * GTT virtualization * * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Zhi Wang * Zhenyu Wang * Xiao Zheng * * Contributors: * Min He * Bing Niu * */ #include "i915_drv.h" #include "gvt.h" #include "i915_pvinfo.h" #include "trace.h" #if defined(VERBOSE_DEBUG) #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) #else #define gvt_vdbg_mm(fmt, args...) #endif static bool enable_out_of_sync = false; static int preallocated_oos_pages = 8192; /* * validate a gm address and related range size, * translate it to host gm address */ bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) { if (size == 0) return vgpu_gmadr_is_valid(vgpu, addr); if (vgpu_gmadr_is_aperture(vgpu, addr) && vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) return true; else if (vgpu_gmadr_is_hidden(vgpu, addr) && vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) return true; gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", addr, size); return false; } /* translate a guest gmadr to host gmadr */ int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), "invalid guest gmadr %llx\n", g_addr)) return -EACCES; if (vgpu_gmadr_is_aperture(vgpu, g_addr)) *h_addr = vgpu_aperture_gmadr_base(vgpu) + (g_addr - vgpu_aperture_offset(vgpu)); else *h_addr = vgpu_hidden_gmadr_base(vgpu) + (g_addr - vgpu_hidden_offset(vgpu)); return 0; } /* translate a host gmadr to guest gmadr */ int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), "invalid host gmadr %llx\n", h_addr)) return -EACCES; if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) *g_addr = vgpu_aperture_gmadr_base(vgpu) + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); else *g_addr = vgpu_hidden_gmadr_base(vgpu) + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); return 0; } int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, unsigned long *h_index) { u64 h_addr; int ret; ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, &h_addr); if (ret) return ret; *h_index = h_addr >> I915_GTT_PAGE_SHIFT; return 0; } int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, unsigned long *g_index) { u64 g_addr; int ret; ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, &g_addr); if (ret) return ret; *g_index = g_addr >> I915_GTT_PAGE_SHIFT; return 0; } #define gtt_type_is_entry(type) \ (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ && type != GTT_TYPE_PPGTT_PTE_ENTRY \ && type != GTT_TYPE_PPGTT_ROOT_ENTRY) #define gtt_type_is_pt(type) \ (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) #define gtt_type_is_pte_pt(type) \ (type == GTT_TYPE_PPGTT_PTE_PT) #define gtt_type_is_root_pointer(type) \ (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) #define gtt_init_entry(e, t, p, v) do { \ (e)->type = t; \ (e)->pdev = p; \ memcpy(&(e)->val64, &v, sizeof(v)); \ } while (0) /* * Mappings between GTT_TYPE* enumerations. * Following information can be found according to the given type: * - type of next level page table * - type of entry inside this level page table * - type of entry with PSE set * * If the given type doesn't have such a kind of information, * e.g. give a l4 root entry type, then request to get its PSE type, * give a PTE page table type, then request to get its next level page * table type, as we know l4 root entry doesn't have a PSE bit, * and a PTE page table doesn't have a next level page table type, * GTT_TYPE_INVALID will be returned. This is useful when traversing a * page table. */ struct gtt_type_table_entry { int entry_type; int pt_type; int next_pt_type; int pse_entry_type; }; #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ [type] = { \ .entry_type = e_type, \ .pt_type = cpt_type, \ .next_pt_type = npt_type, \ .pse_entry_type = pse_type, \ } static struct gtt_type_table_entry gtt_type_table[] = { GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, GTT_TYPE_PPGTT_ROOT_L4_ENTRY, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PML4_PT, GTT_TYPE_INVALID), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, GTT_TYPE_PPGTT_PML4_ENTRY, GTT_TYPE_PPGTT_PML4_PT, GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_INVALID), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, GTT_TYPE_PPGTT_PML4_ENTRY, GTT_TYPE_PPGTT_PML4_PT, GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_INVALID), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_PPGTT_PDP_ENTRY, GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PTE_1G_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, GTT_TYPE_PPGTT_ROOT_L3_ENTRY, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PTE_1G_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, GTT_TYPE_PPGTT_PDP_ENTRY, GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PTE_1G_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PDE_ENTRY, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_PPGTT_PTE_2M_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, GTT_TYPE_PPGTT_PDE_ENTRY, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_PPGTT_PTE_2M_ENTRY), /* We take IPS bit as 'PSE' for PTE level. */ GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_PPGTT_PTE_4K_ENTRY, GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PTE_64K_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, GTT_TYPE_PPGTT_PTE_4K_ENTRY, GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PTE_64K_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, GTT_TYPE_PPGTT_PTE_4K_ENTRY, GTT_TYPE_PPGTT_PTE_PT, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PTE_64K_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, GTT_TYPE_PPGTT_PDE_ENTRY, GTT_TYPE_PPGTT_PDE_PT, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PTE_2M_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, GTT_TYPE_PPGTT_PDP_ENTRY, GTT_TYPE_PPGTT_PDP_PT, GTT_TYPE_INVALID, GTT_TYPE_PPGTT_PTE_1G_ENTRY), GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, GTT_TYPE_GGTT_PTE, GTT_TYPE_INVALID, GTT_TYPE_INVALID, GTT_TYPE_INVALID), }; static inline int get_next_pt_type(int type) { return gtt_type_table[type].next_pt_type; } static inline int get_pt_type(int type) { return gtt_type_table[type].pt_type; } static inline int get_entry_type(int type) { return gtt_type_table[type].entry_type; } static inline int get_pse_type(int type) { return gtt_type_table[type].pse_entry_type; } static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) { void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; return readq(addr); } static void ggtt_invalidate(struct intel_gt *gt) { mmio_hw_access_pre(gt); intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); mmio_hw_access_post(gt); } static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) { void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; writeq(pte, addr); } static inline int gtt_get_entry64(void *pt, struct intel_gvt_gtt_entry *e, unsigned long index, bool hypervisor_access, unsigned long gpa, struct intel_vgpu *vgpu) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; int ret; if (WARN_ON(info->gtt_entry_size != 8)) return -EINVAL; if (hypervisor_access) { ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + (index << info->gtt_entry_size_shift), &e->val64, 8); if (WARN_ON(ret)) return ret; } else if (!pt) { e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); } else { e->val64 = *((u64 *)pt + index); } return 0; } static inline int gtt_set_entry64(void *pt, struct intel_gvt_gtt_entry *e, unsigned long index, bool hypervisor_access, unsigned long gpa, struct intel_vgpu *vgpu) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; int ret; if (WARN_ON(info->gtt_entry_size != 8)) return -EINVAL; if (hypervisor_access) { ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + (index << info->gtt_entry_size_shift), &e->val64, 8); if (WARN_ON(ret)) return ret; } else if (!pt) { write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); } else { *((u64 *)pt + index) = e->val64; } return 0; } #define GTT_HAW 46 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ #define GTT_64K_PTE_STRIDE 16 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) { unsigned long pfn; if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; else pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; return pfn; } static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) { if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { e->val64 &= ~ADDR_1G_MASK; pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { e->val64 &= ~ADDR_2M_MASK; pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { e->val64 &= ~ADDR_64K_MASK; pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); } else { e->val64 &= ~ADDR_4K_MASK; pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); } e->val64 |= (pfn << PAGE_SHIFT); } static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) { return !!(e->val64 & _PAGE_PSE); } static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) { if (gen8_gtt_test_pse(e)) { switch (e->type) { case GTT_TYPE_PPGTT_PTE_2M_ENTRY: e->val64 &= ~_PAGE_PSE; e->type = GTT_TYPE_PPGTT_PDE_ENTRY; break; case GTT_TYPE_PPGTT_PTE_1G_ENTRY: e->type = GTT_TYPE_PPGTT_PDP_ENTRY; e->val64 &= ~_PAGE_PSE; break; default: WARN_ON(1); } } } static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) { if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) return false; return !!(e->val64 & GEN8_PDE_IPS_64K); } static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) { if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) return; e->val64 &= ~GEN8_PDE_IPS_64K; } static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) { /* * i915 writes PDP root pointer registers without present bit, * it also works, so we need to treat root pointer entry * specifically. */ if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) return (e->val64 != 0); else return (e->val64 & _PAGE_PRESENT); } static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) { e->val64 &= ~_PAGE_PRESENT; } static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) { e->val64 |= _PAGE_PRESENT; } static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) { return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); } static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) { e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; } static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) { e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; } /* * Per-platform GMA routines. */ static unsigned long gma_to_ggtt_pte_index(unsigned long gma) { unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); trace_gma_index(__func__, gma, x); return x; } #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ { \ unsigned long x = (exp); \ trace_gma_index(__func__, gma, x); \ return x; \ } DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { .get_entry = gtt_get_entry64, .set_entry = gtt_set_entry64, .clear_present = gtt_entry_clear_present, .set_present = gtt_entry_set_present, .test_present = gen8_gtt_test_present, .test_pse = gen8_gtt_test_pse, .clear_pse = gen8_gtt_clear_pse, .clear_ips = gen8_gtt_clear_ips, .test_ips = gen8_gtt_test_ips, .clear_64k_splited = gen8_gtt_clear_64k_splited, .set_64k_splited = gen8_gtt_set_64k_splited, .test_64k_splited = gen8_gtt_test_64k_splited, .get_pfn = gen8_gtt_get_pfn, .set_pfn = gen8_gtt_set_pfn, }; static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, .gma_to_pte_index = gen8_gma_to_pte_index, .gma_to_pde_index = gen8_gma_to_pde_index, .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, .gma_to_pml4_index = gen8_gma_to_pml4_index, }; /* Update entry type per pse and ips bit. */ static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, struct intel_gvt_gtt_entry *entry, bool ips) { switch (entry->type) { case GTT_TYPE_PPGTT_PDE_ENTRY: case GTT_TYPE_PPGTT_PDP_ENTRY: if (pte_ops->test_pse(entry)) entry->type = get_pse_type(entry->type); break; case GTT_TYPE_PPGTT_PTE_4K_ENTRY: if (ips) entry->type = get_pse_type(entry->type); break; default: GEM_BUG_ON(!gtt_type_is_entry(entry->type)); } GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); } /* * MM helpers. */ static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index, bool guest) { struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); entry->type = mm->ppgtt_mm.root_entry_type; pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : mm->ppgtt_mm.shadow_pdps, entry, index, false, 0, mm->vgpu); update_entry_type_for_real(pte_ops, entry, false); } static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index) { _ppgtt_get_root_entry(mm, entry, index, true); } static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index) { _ppgtt_get_root_entry(mm, entry, index, false); } static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index, bool guest) { struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : mm->ppgtt_mm.shadow_pdps, entry, index, false, 0, mm->vgpu); } static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index) { _ppgtt_set_root_entry(mm, entry, index, false); } static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index) { struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); entry->type = GTT_TYPE_GGTT_PTE; pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, false, 0, mm->vgpu); } static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index) { struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, false, 0, mm->vgpu); } static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index) { struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); } static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *entry, unsigned long index) { struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; unsigned long offset = index; GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT); mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64; } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT); mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64; } pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); } /* * PPGTT shadow page table helpers. */ static inline int ppgtt_spt_get_entry( struct intel_vgpu_ppgtt_spt *spt, void *page_table, int type, struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) { struct intel_gvt *gvt = spt->vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; int ret; e->type = get_entry_type(type); if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) return -EINVAL; ret = ops->get_entry(page_table, e, index, guest, spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, spt->vgpu); if (ret) return ret; update_entry_type_for_real(ops, e, guest ? spt->guest_page.pde_ips : false); gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", type, e->type, index, e->val64); return 0; } static inline int ppgtt_spt_set_entry( struct intel_vgpu_ppgtt_spt *spt, void *page_table, int type, struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) { struct intel_gvt *gvt = spt->vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) return -EINVAL; gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", type, e->type, index, e->val64); return ops->set_entry(page_table, e, index, guest, spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, spt->vgpu); } #define ppgtt_get_guest_entry(spt, e, index) \ ppgtt_spt_get_entry(spt, NULL, \ spt->guest_page.type, e, index, true) #define ppgtt_set_guest_entry(spt, e, index) \ ppgtt_spt_set_entry(spt, NULL, \ spt->guest_page.type, e, index, true) #define ppgtt_get_shadow_entry(spt, e, index) \ ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ spt->shadow_page.type, e, index, false) #define ppgtt_set_shadow_entry(spt, e, index) \ ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ spt->shadow_page.type, e, index, false) static void *alloc_spt(gfp_t gfp_mask) { struct intel_vgpu_ppgtt_spt *spt; spt = kzalloc(sizeof(*spt), gfp_mask); if (!spt) return NULL; spt->shadow_page.page = alloc_page(gfp_mask); if (!spt->shadow_page.page) { kfree(spt); return NULL; } return spt; } static void free_spt(struct intel_vgpu_ppgtt_spt *spt) { __free_page(spt->shadow_page.page); kfree(spt); } static int detach_oos_page(struct intel_vgpu *vgpu, struct intel_vgpu_oos_page *oos_page); static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) { struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev; trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, DMA_BIDIRECTIONAL); radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); if (spt->guest_page.gfn) { if (spt->guest_page.oos_page) detach_oos_page(spt->vgpu, spt->guest_page.oos_page); intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); } list_del_init(&spt->post_shadow_list); free_spt(spt); } static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) { struct intel_vgpu_ppgtt_spt *spt, *spn; struct radix_tree_iter iter; LIST_HEAD(all_spt); void __rcu **slot; rcu_read_lock(); radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { spt = radix_tree_deref_slot(slot); list_move(&spt->post_shadow_list, &all_spt); } rcu_read_unlock(); list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) ppgtt_free_spt(spt); } static int ppgtt_handle_guest_write_page_table_bytes( struct intel_vgpu_ppgtt_spt *spt, u64 pa, void *p_data, int bytes); static int ppgtt_write_protection_handler( struct intel_vgpu_page_track *page_track, u64 gpa, void *data, int bytes) { struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; int ret; if (bytes != 4 && bytes != 8) return -EINVAL; ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); if (ret) return ret; return ret; } /* Find a spt by guest gfn. */ static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( struct intel_vgpu *vgpu, unsigned long gfn) { struct intel_vgpu_page_track *track; track = intel_vgpu_find_page_track(vgpu, gfn); if (track && track->handler == ppgtt_write_protection_handler) return track->priv_data; return NULL; } /* Find the spt by shadow page mfn. */ static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( struct intel_vgpu *vgpu, unsigned long mfn) { return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); } static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); /* Allocate shadow page table without guest page. */ static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) { struct device *kdev = vgpu->gvt->gt->i915->drm.dev; struct intel_vgpu_ppgtt_spt *spt = NULL; dma_addr_t daddr; int ret; retry: spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); if (!spt) { if (reclaim_one_ppgtt_mm(vgpu->gvt)) goto retry; gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); return ERR_PTR(-ENOMEM); } spt->vgpu = vgpu; atomic_set(&spt->refcount, 1); INIT_LIST_HEAD(&spt->post_shadow_list); /* * Init shadow_page. */ spt->shadow_page.type = type; daddr = dma_map_page(kdev, spt->shadow_page.page, 0, 4096, DMA_BIDIRECTIONAL); if (dma_mapping_error(kdev, daddr)) { gvt_vgpu_err("fail to map dma addr\n"); ret = -EINVAL; goto err_free_spt; } spt->shadow_page.vaddr = page_address(spt->shadow_page.page); spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); if (ret) goto err_unmap_dma; return spt; err_unmap_dma: dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL); err_free_spt: free_spt(spt); return ERR_PTR(ret); } /* Allocate shadow page table associated with specific gfn. */ static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, unsigned long gfn, bool guest_pde_ips) { struct intel_vgpu_ppgtt_spt *spt; int ret; spt = ppgtt_alloc_spt(vgpu, type); if (IS_ERR(spt)) return spt; /* * Init guest_page. */ ret = intel_vgpu_register_page_track(vgpu, gfn, ppgtt_write_protection_handler, spt); if (ret) { ppgtt_free_spt(spt); return ERR_PTR(ret); } spt->guest_page.type = type; spt->guest_page.gfn = gfn; spt->guest_page.pde_ips = guest_pde_ips; trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); return spt; } #define pt_entry_size_shift(spt) \ ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) #define pt_entries(spt) \ (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) #define for_each_present_guest_entry(spt, e, i) \ for (i = 0; i < pt_entries(spt); \ i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ if (!ppgtt_get_guest_entry(spt, e, i) && \ spt->vgpu->gvt->gtt.pte_ops->test_present(e)) #define for_each_present_shadow_entry(spt, e, i) \ for (i = 0; i < pt_entries(spt); \ i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ if (!ppgtt_get_shadow_entry(spt, e, i) && \ spt->vgpu->gvt->gtt.pte_ops->test_present(e)) #define for_each_shadow_entry(spt, e, i) \ for (i = 0; i < pt_entries(spt); \ i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ if (!ppgtt_get_shadow_entry(spt, e, i)) static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) { int v = atomic_read(&spt->refcount); trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); atomic_inc(&spt->refcount); } static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) { int v = atomic_read(&spt->refcount); trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); return atomic_dec_return(&spt->refcount); } static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *e) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *s; enum intel_gvt_gtt_type cur_pt_type; GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { cur_pt_type = get_next_pt_type(e->type); if (!gtt_type_is_pt(cur_pt_type) || !gtt_type_is_pt(cur_pt_type + 1)) { drm_WARN(&i915->drm, 1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type); return -EINVAL; } cur_pt_type += 1; if (ops->get_pfn(e) == vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) return 0; } s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); if (!s) { gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", ops->get_pfn(e)); return -ENXIO; } return ppgtt_invalidate_spt(s); } static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, struct intel_gvt_gtt_entry *entry) { struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; unsigned long pfn; int type; pfn = ops->get_pfn(entry); type = spt->shadow_page.type; /* Uninitialized spte or unshadowed spte. */ if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) return; intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); } static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) { struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_entry e; unsigned long index; int ret; trace_spt_change(spt->vgpu->id, "die", spt, spt->guest_page.gfn, spt->shadow_page.type); if (ppgtt_put_spt(spt) > 0) return 0; for_each_present_shadow_entry(spt, &e, index) { switch (e.type) { case GTT_TYPE_PPGTT_PTE_4K_ENTRY: gvt_vdbg_mm("invalidate 4K entry\n"); ppgtt_invalidate_pte(spt, &e); break; case GTT_TYPE_PPGTT_PTE_64K_ENTRY: /* We don't setup 64K shadow entry so far. */ WARN(1, "suspicious 64K gtt entry\n"); continue; case GTT_TYPE_PPGTT_PTE_2M_ENTRY: gvt_vdbg_mm("invalidate 2M entry\n"); continue; case GTT_TYPE_PPGTT_PTE_1G_ENTRY: WARN(1, "GVT doesn't support 1GB page\n"); continue; case GTT_TYPE_PPGTT_PML4_ENTRY: case GTT_TYPE_PPGTT_PDP_ENTRY: case GTT_TYPE_PPGTT_PDE_ENTRY: gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); ret = ppgtt_invalidate_spt_by_shadow_entry( spt->vgpu, &e); if (ret) goto fail; break; default: GEM_BUG_ON(1); } } trace_spt_change(spt->vgpu->id, "release", spt, spt->guest_page.gfn, spt->shadow_page.type); ppgtt_free_spt(spt); return 0; fail: gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", spt, e.val64, e.type); return ret; } static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) { struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; if (GRAPHICS_VER(dev_priv) == 9) { u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & GAMW_ECO_ENABLE_64K_IPS_FIELD; return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; } else if (GRAPHICS_VER(dev_priv) >= 11) { /* 64K paging only controlled by IPS bit in PTE now. */ return true; } else return false; } static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) { struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *spt = NULL; bool ips = false; int ret; GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); if (spt) { ppgtt_get_spt(spt); if (ips != spt->guest_page.pde_ips) { spt->guest_page.pde_ips = ips; gvt_dbg_mm("reshadow PDE since ips changed\n"); clear_page(spt->shadow_page.vaddr); ret = ppgtt_populate_spt(spt); if (ret) { ppgtt_put_spt(spt); goto err; } } } else { int type = get_next_pt_type(we->type); if (!gtt_type_is_pt(type)) { ret = -EINVAL; goto err; } spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); if (IS_ERR(spt)) { ret = PTR_ERR(spt); goto err; } ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); if (ret) goto err_free_spt; ret = ppgtt_populate_spt(spt); if (ret) goto err_free_spt; trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, spt->shadow_page.type); } return spt; err_free_spt: ppgtt_free_spt(spt); spt = NULL; err: gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", spt, we->val64, we->type); return ERR_PTR(ret); } static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) { struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; se->type = ge->type; se->val64 = ge->val64; /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) ops->clear_ips(se); ops->set_pfn(se, s->shadow_page.mfn); } /** * Check if can do 2M page * @vgpu: target vgpu * @entry: target pfn's gtt entry * * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition, * negative if found err. */ static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *entry) { struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; unsigned long pfn; if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) return 0; pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); if (pfn == INTEL_GVT_INVALID_ADDR) return -EINVAL; return PageTransHuge(pfn_to_page(pfn)); } static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, struct intel_vgpu_ppgtt_spt *spt, unsigned long index, struct intel_gvt_gtt_entry *se) { struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *sub_spt; struct intel_gvt_gtt_entry sub_se; unsigned long start_gfn; dma_addr_t dma_addr; unsigned long sub_index; int ret; gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); start_gfn = ops->get_pfn(se); sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); if (IS_ERR(sub_spt)) return PTR_ERR(sub_spt); for_each_shadow_entry(sub_spt, &sub_se, sub_index) { ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, start_gfn + sub_index, PAGE_SIZE, &dma_addr); if (ret) { ppgtt_invalidate_spt(spt); return ret; } sub_se.val64 = se->val64; /* Copy the PAT field from PDE. */ sub_se.val64 &= ~_PAGE_PAT; sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); } /* Clear dirty field. */ se->val64 &= ~_PAGE_DIRTY; ops->clear_pse(se); ops->clear_ips(se); ops->set_pfn(se, sub_spt->shadow_page.mfn); ppgtt_set_shadow_entry(spt, se, index); return 0; } static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, struct intel_vgpu_ppgtt_spt *spt, unsigned long index, struct intel_gvt_gtt_entry *se) { struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_gvt_gtt_entry entry = *se; unsigned long start_gfn; dma_addr_t dma_addr; int i, ret; gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); start_gfn = ops->get_pfn(se); entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; ops->set_64k_splited(&entry); for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, start_gfn + i, PAGE_SIZE, &dma_addr); if (ret) return ret; ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); ppgtt_set_shadow_entry(spt, &entry, index + i); } return 0; } static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, struct intel_vgpu_ppgtt_spt *spt, unsigned long index, struct intel_gvt_gtt_entry *ge) { struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; struct intel_gvt_gtt_entry se = *ge; unsigned long gfn, page_size = PAGE_SIZE; dma_addr_t dma_addr; int ret; if (!pte_ops->test_present(ge)) return 0; gfn = pte_ops->get_pfn(ge); switch (ge->type) { case GTT_TYPE_PPGTT_PTE_4K_ENTRY: gvt_vdbg_mm("shadow 4K gtt entry\n"); break; case GTT_TYPE_PPGTT_PTE_64K_ENTRY: gvt_vdbg_mm("shadow 64K gtt entry\n"); /* * The layout of 64K page is special, the page size is * controlled by uper PDE. To be simple, we always split * 64K page to smaller 4K pages in shadow PT. */ return split_64KB_gtt_entry(vgpu, spt, index, &se); case GTT_TYPE_PPGTT_PTE_2M_ENTRY: gvt_vdbg_mm("shadow 2M gtt entry\n"); ret = is_2MB_gtt_possible(vgpu, ge); if (ret == 0) return split_2MB_gtt_entry(vgpu, spt, index, &se); else if (ret < 0) return ret; page_size = I915_GTT_PAGE_SIZE_2M; break; case GTT_TYPE_PPGTT_PTE_1G_ENTRY: gvt_vgpu_err("GVT doesn't support 1GB entry\n"); return -EINVAL; default: GEM_BUG_ON(1); } /* direct shadow */ ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr); if (ret) return -ENXIO; pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); ppgtt_set_shadow_entry(spt, &se, index); return 0; } static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) { struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *s; struct intel_gvt_gtt_entry se, ge; unsigned long gfn, i; int ret; trace_spt_change(spt->vgpu->id, "born", spt, spt->guest_page.gfn, spt->shadow_page.type); for_each_present_guest_entry(spt, &ge, i) { if (gtt_type_is_pt(get_next_pt_type(ge.type))) { s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); if (IS_ERR(s)) { ret = PTR_ERR(s); goto fail; } ppgtt_get_shadow_entry(spt, &se, i); ppgtt_generate_shadow_entry(&se, s, &ge); ppgtt_set_shadow_entry(spt, &se, i); } else { gfn = ops->get_pfn(&ge); if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { ops->set_pfn(&se, gvt->gtt.scratch_mfn); ppgtt_set_shadow_entry(spt, &se, i); continue; } ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); if (ret) goto fail; } } return 0; fail: gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", spt, ge.val64, ge.type); return ret; } static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, struct intel_gvt_gtt_entry *se, unsigned long index) { struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; int ret; trace_spt_guest_change(spt->vgpu->id, "remove", spt, spt->shadow_page.type, se->val64, index); gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", se->type, index, se->val64); if (!ops->test_present(se)) return 0; if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) return 0; if (gtt_type_is_pt(get_next_pt_type(se->type))) { struct intel_vgpu_ppgtt_spt *s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); if (!s) { gvt_vgpu_err("fail to find guest page\n"); ret = -ENXIO; goto fail; } ret = ppgtt_invalidate_spt(s); if (ret) goto fail; } else { /* We don't setup 64K shadow entry so far. */ WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, "suspicious 64K entry\n"); ppgtt_invalidate_pte(spt, se); } return 0; fail: gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", spt, se->val64, se->type); return ret; } static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, struct intel_gvt_gtt_entry *we, unsigned long index) { struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_entry m; struct intel_vgpu_ppgtt_spt *s; int ret; trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, we->val64, index); gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", we->type, index, we->val64); if (gtt_type_is_pt(get_next_pt_type(we->type))) { s = ppgtt_populate_spt_by_guest_entry(vgpu, we); if (IS_ERR(s)) { ret = PTR_ERR(s); goto fail; } ppgtt_get_shadow_entry(spt, &m, index); ppgtt_generate_shadow_entry(&m, s, we); ppgtt_set_shadow_entry(spt, &m, index); } else { ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); if (ret) goto fail; } return 0; fail: gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", spt, we->val64, we->type); return ret; } static int sync_oos_page(struct intel_vgpu *vgpu, struct intel_vgpu_oos_page *oos_page) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; struct intel_gvt_gtt_entry old, new; int index; int ret; trace_oos_change(vgpu->id, "sync", oos_page->id, spt, spt->guest_page.type); old.type = new.type = get_entry_type(spt->guest_page.type); old.val64 = new.val64 = 0; for (index = 0; index < (I915_GTT_PAGE_SIZE >> info->gtt_entry_size_shift); index++) { ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); ops->get_entry(NULL, &new, index, true, spt->guest_page.gfn << PAGE_SHIFT, vgpu); if (old.val64 == new.val64 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) continue; trace_oos_sync(vgpu->id, oos_page->id, spt, spt->guest_page.type, new.val64, index); ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); if (ret) return ret; ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); } spt->guest_page.write_cnt = 0; list_del_init(&spt->post_shadow_list); return 0; } static int detach_oos_page(struct intel_vgpu *vgpu, struct intel_vgpu_oos_page *oos_page) { struct intel_gvt *gvt = vgpu->gvt; struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; trace_oos_change(vgpu->id, "detach", oos_page->id, spt, spt->guest_page.type); spt->guest_page.write_cnt = 0; spt->guest_page.oos_page = NULL; oos_page->spt = NULL; list_del_init(&oos_page->vm_list); list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); return 0; } static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, struct intel_vgpu_ppgtt_spt *spt) { struct intel_gvt *gvt = spt->vgpu->gvt; int ret; ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, oos_page->mem, I915_GTT_PAGE_SIZE); if (ret) return ret; oos_page->spt = spt; spt->guest_page.oos_page = oos_page; list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); trace_oos_change(spt->vgpu->id, "attach", oos_page->id, spt, spt->guest_page.type); return 0; } static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) { struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; int ret; ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); if (ret) return ret; trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, spt, spt->guest_page.type); list_del_init(&oos_page->vm_list); return sync_oos_page(spt->vgpu, oos_page); } static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) { struct intel_gvt *gvt = spt->vgpu->gvt; struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; int ret; WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); if (list_empty(>t->oos_page_free_list_head)) { oos_page = container_of(gtt->oos_page_use_list_head.next, struct intel_vgpu_oos_page, list); ret = ppgtt_set_guest_page_sync(oos_page->spt); if (ret) return ret; ret = detach_oos_page(spt->vgpu, oos_page); if (ret) return ret; } else oos_page = container_of(gtt->oos_page_free_list_head.next, struct intel_vgpu_oos_page, list); return attach_oos_page(oos_page, spt); } static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) { struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) return -EINVAL; trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, spt, spt->guest_page.type); list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); } /** * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU * @vgpu: a vGPU * * This function is called before submitting a guest workload to host, * to sync all the out-of-synced shadow for vGPU * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) { struct list_head *pos, *n; struct intel_vgpu_oos_page *oos_page; int ret; if (!enable_out_of_sync) return 0; list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { oos_page = container_of(pos, struct intel_vgpu_oos_page, vm_list); ret = ppgtt_set_guest_page_sync(oos_page->spt); if (ret) return ret; } return 0; } /* * The heart of PPGTT shadow page table. */ static int ppgtt_handle_guest_write_page_table( struct intel_vgpu_ppgtt_spt *spt, struct intel_gvt_gtt_entry *we, unsigned long index) { struct intel_vgpu *vgpu = spt->vgpu; int type = spt->shadow_page.type; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_gvt_gtt_entry old_se; int new_present; int i, ret; new_present = ops->test_present(we); /* * Adding the new entry first and then removing the old one, that can * guarantee the ppgtt table is validated during the window between * adding and removal. */ ppgtt_get_shadow_entry(spt, &old_se, index); if (new_present) { ret = ppgtt_handle_guest_entry_add(spt, we, index); if (ret) goto fail; } ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); if (ret) goto fail; if (!new_present) { /* For 64KB splited entries, we need clear them all. */ if (ops->test_64k_splited(&old_se) && !(index % GTT_64K_PTE_STRIDE)) { gvt_vdbg_mm("remove splited 64K shadow entries\n"); for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { ops->clear_64k_splited(&old_se); ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn); ppgtt_set_shadow_entry(spt, &old_se, index + i); } } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { ops->clear_pse(&old_se); ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn); ppgtt_set_shadow_entry(spt, &old_se, index); } else { ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn); ppgtt_set_shadow_entry(spt, &old_se, index); } } return 0; fail: gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", spt, we->val64, we->type); return ret; } static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) { return enable_out_of_sync && gtt_type_is_pte_pt(spt->guest_page.type) && spt->guest_page.write_cnt >= 2; } static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, unsigned long index) { set_bit(index, spt->post_shadow_bitmap); if (!list_empty(&spt->post_shadow_list)) return; list_add_tail(&spt->post_shadow_list, &spt->vgpu->gtt.post_shadow_list_head); } /** * intel_vgpu_flush_post_shadow - flush the post shadow transactions * @vgpu: a vGPU * * This function is called before submitting a guest workload to host, * to flush all the post shadows for a vGPU. * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) { struct list_head *pos, *n; struct intel_vgpu_ppgtt_spt *spt; struct intel_gvt_gtt_entry ge; unsigned long index; int ret; list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { spt = container_of(pos, struct intel_vgpu_ppgtt_spt, post_shadow_list); for_each_set_bit(index, spt->post_shadow_bitmap, GTT_ENTRY_NUM_IN_ONE_PAGE) { ppgtt_get_guest_entry(spt, &ge, index); ret = ppgtt_handle_guest_write_page_table(spt, &ge, index); if (ret) return ret; clear_bit(index, spt->post_shadow_bitmap); } list_del_init(&spt->post_shadow_list); } return 0; } static int ppgtt_handle_guest_write_page_table_bytes( struct intel_vgpu_ppgtt_spt *spt, u64 pa, void *p_data, int bytes) { struct intel_vgpu *vgpu = spt->vgpu; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; struct intel_gvt_gtt_entry we, se; unsigned long index; int ret; index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; ppgtt_get_guest_entry(spt, &we, index); /* * For page table which has 64K gtt entry, only PTE#0, PTE#16, * PTE#32, ... PTE#496 are used. Unused PTEs update should be * ignored. */ if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && (index % GTT_64K_PTE_STRIDE)) { gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", index); return 0; } if (bytes == info->gtt_entry_size) { ret = ppgtt_handle_guest_write_page_table(spt, &we, index); if (ret) return ret; } else { if (!test_bit(index, spt->post_shadow_bitmap)) { int type = spt->shadow_page.type; ppgtt_get_shadow_entry(spt, &se, index); ret = ppgtt_handle_guest_entry_removal(spt, &se, index); if (ret) return ret; ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); ppgtt_set_shadow_entry(spt, &se, index); } ppgtt_set_post_shadow(spt, index); } if (!enable_out_of_sync) return 0; spt->guest_page.write_cnt++; if (spt->guest_page.oos_page) ops->set_entry(spt->guest_page.oos_page->mem, &we, index, false, 0, vgpu); if (can_do_out_of_sync(spt)) { if (!spt->guest_page.oos_page) ppgtt_allocate_oos_page(spt); ret = ppgtt_set_guest_page_oos(spt); if (ret < 0) return ret; } return 0; } static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; struct intel_gvt_gtt_entry se; int index; if (!mm->ppgtt_mm.shadowed) return; for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { ppgtt_get_shadow_root_entry(mm, &se, index); if (!ops->test_present(&se)) continue; ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); se.val64 = 0; ppgtt_set_shadow_root_entry(mm, &se, index); trace_spt_guest_change(vgpu->id, "destroy root pointer", NULL, se.type, se.val64, index); } mm->ppgtt_mm.shadowed = false; } static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; struct intel_vgpu_ppgtt_spt *spt; struct intel_gvt_gtt_entry ge, se; int index, ret; if (mm->ppgtt_mm.shadowed) return 0; mm->ppgtt_mm.shadowed = true; for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { ppgtt_get_guest_root_entry(mm, &ge, index); if (!ops->test_present(&ge)) continue; trace_spt_guest_change(vgpu->id, __func__, NULL, ge.type, ge.val64, index); spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); if (IS_ERR(spt)) { gvt_vgpu_err("fail to populate guest root pointer\n"); ret = PTR_ERR(spt); goto fail; } ppgtt_generate_shadow_entry(&se, spt, &ge); ppgtt_set_shadow_root_entry(mm, &se, index); trace_spt_guest_change(vgpu->id, "populate root pointer", NULL, se.type, se.val64, index); } return 0; fail: invalidate_ppgtt_mm(mm); return ret; } static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) { struct intel_vgpu_mm *mm; mm = kzalloc(sizeof(*mm), GFP_KERNEL); if (!mm) return NULL; mm->vgpu = vgpu; kref_init(&mm->ref); atomic_set(&mm->pincount, 0); return mm; } static void vgpu_free_mm(struct intel_vgpu_mm *mm) { kfree(mm); } /** * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU * @vgpu: a vGPU * @root_entry_type: ppgtt root entry type * @pdps: guest pdps. * * This function is used to create a ppgtt mm object for a vGPU. * * Returns: * Zero on success, negative error code in pointer if failed. */ struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) { struct intel_gvt *gvt = vgpu->gvt; struct intel_vgpu_mm *mm; int ret; mm = vgpu_alloc_mm(vgpu); if (!mm) return ERR_PTR(-ENOMEM); mm->type = INTEL_GVT_MM_PPGTT; GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); mm->ppgtt_mm.root_entry_type = root_entry_type; INIT_LIST_HEAD(&mm->ppgtt_mm.list); INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); INIT_LIST_HEAD(&mm->ppgtt_mm.link); if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) mm->ppgtt_mm.guest_pdps[0] = pdps[0]; else memcpy(mm->ppgtt_mm.guest_pdps, pdps, sizeof(mm->ppgtt_mm.guest_pdps)); ret = shadow_ppgtt_mm(mm); if (ret) { gvt_vgpu_err("failed to shadow ppgtt mm\n"); vgpu_free_mm(mm); return ERR_PTR(ret); } list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); mutex_lock(&gvt->gtt.ppgtt_mm_lock); list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); mutex_unlock(&gvt->gtt.ppgtt_mm_lock); return mm; } static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) { struct intel_vgpu_mm *mm; unsigned long nr_entries; mm = vgpu_alloc_mm(vgpu); if (!mm) return ERR_PTR(-ENOMEM); mm->type = INTEL_GVT_MM_GGTT; nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; mm->ggtt_mm.virtual_ggtt = vzalloc(array_size(nr_entries, vgpu->gvt->device_info.gtt_entry_size)); if (!mm->ggtt_mm.virtual_ggtt) { vgpu_free_mm(mm); return ERR_PTR(-ENOMEM); } mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); if (!mm->ggtt_mm.host_ggtt_aperture) { vfree(mm->ggtt_mm.virtual_ggtt); vgpu_free_mm(mm); return ERR_PTR(-ENOMEM); } mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); if (!mm->ggtt_mm.host_ggtt_hidden) { vfree(mm->ggtt_mm.host_ggtt_aperture); vfree(mm->ggtt_mm.virtual_ggtt); vgpu_free_mm(mm); return ERR_PTR(-ENOMEM); } return mm; } /** * _intel_vgpu_mm_release - destroy a mm object * @mm_ref: a kref object * * This function is used to destroy a mm object for vGPU * */ void _intel_vgpu_mm_release(struct kref *mm_ref) { struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); if (GEM_WARN_ON(atomic_read(&mm->pincount))) gvt_err("vgpu mm pin count bug detected\n"); if (mm->type == INTEL_GVT_MM_PPGTT) { list_del(&mm->ppgtt_mm.list); mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); list_del(&mm->ppgtt_mm.lru_list); mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); invalidate_ppgtt_mm(mm); } else { vfree(mm->ggtt_mm.virtual_ggtt); vfree(mm->ggtt_mm.host_ggtt_aperture); vfree(mm->ggtt_mm.host_ggtt_hidden); } vgpu_free_mm(mm); } /** * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object * @mm: a vGPU mm object * * This function is called when user doesn't want to use a vGPU mm object */ void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) { atomic_dec_if_positive(&mm->pincount); } /** * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object * @mm: target vgpu mm * * This function is called when user wants to use a vGPU mm object. If this * mm object hasn't been shadowed yet, the shadow will be populated at this * time. * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) { int ret; atomic_inc(&mm->pincount); if (mm->type == INTEL_GVT_MM_PPGTT) { ret = shadow_ppgtt_mm(mm); if (ret) return ret; mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); list_move_tail(&mm->ppgtt_mm.lru_list, &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); } return 0; } static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) { struct intel_vgpu_mm *mm; struct list_head *pos, *n; mutex_lock(&gvt->gtt.ppgtt_mm_lock); list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); if (atomic_read(&mm->pincount)) continue; list_del_init(&mm->ppgtt_mm.lru_list); mutex_unlock(&gvt->gtt.ppgtt_mm_lock); invalidate_ppgtt_mm(mm); return 1; } mutex_unlock(&gvt->gtt.ppgtt_mm_lock); return 0; } /* * GMA translation APIs. */ static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; struct intel_vgpu_ppgtt_spt *s; s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); if (!s) return -ENXIO; if (!guest) ppgtt_get_shadow_entry(s, e, index); else ppgtt_get_guest_entry(s, e, index); return 0; } /** * intel_vgpu_gma_to_gpa - translate a gma to GPA * @mm: mm object. could be a PPGTT or GGTT mm object * @gma: graphics memory address in this mm object * * This function is used to translate a graphics memory address in specific * graphics memory space to guest physical address. * * Returns: * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. */ unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) { struct intel_vgpu *vgpu = mm->vgpu; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; unsigned long gpa = INTEL_GVT_INVALID_ADDR; unsigned long gma_index[4]; struct intel_gvt_gtt_entry e; int i, levels = 0; int ret; GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT); if (mm->type == INTEL_GVT_MM_GGTT) { if (!vgpu_gmadr_is_valid(vgpu, gma)) goto err; ggtt_get_guest_entry(mm, &e, gma_ops->gma_to_ggtt_pte_index(gma)); gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + (gma & ~I915_GTT_PAGE_MASK); trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); } else { switch (mm->ppgtt_mm.root_entry_type) { case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: ppgtt_get_shadow_root_entry(mm, &e, 0); gma_index[0] = gma_ops->gma_to_pml4_index(gma); gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); gma_index[2] = gma_ops->gma_to_pde_index(gma); gma_index[3] = gma_ops->gma_to_pte_index(gma); levels = 4; break; case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: ppgtt_get_shadow_root_entry(mm, &e, gma_ops->gma_to_l3_pdp_index(gma)); gma_index[0] = gma_ops->gma_to_pde_index(gma); gma_index[1] = gma_ops->gma_to_pte_index(gma); levels = 2; break; default: GEM_BUG_ON(1); } /* walk the shadow page table and get gpa from guest entry */ for (i = 0; i < levels; i++) { ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], (i == levels - 1)); if (ret) goto err; if (!pte_ops->test_present(&e)) { gvt_dbg_core("GMA 0x%lx is not present\n", gma); goto err; } } gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + (gma & ~I915_GTT_PAGE_MASK); trace_gma_translate(vgpu->id, "ppgtt", 0, mm->ppgtt_mm.root_entry_type, gma, gpa); } return gpa; err: gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); return INTEL_GVT_INVALID_ADDR; } static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; unsigned long index = off >> info->gtt_entry_size_shift; unsigned long gma; struct intel_gvt_gtt_entry e; if (bytes != 4 && bytes != 8) return -EINVAL; gma = index << I915_GTT_PAGE_SHIFT; if (!intel_gvt_ggtt_validate_range(vgpu, gma, 1 << I915_GTT_PAGE_SHIFT)) { gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); memset(p_data, 0, bytes); return 0; } ggtt_get_guest_entry(ggtt_mm, &e, index); memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), bytes); return 0; } /** * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read * @vgpu: a vGPU * @off: register offset * @p_data: data will be returned to guest * @bytes: data length * * This function is used to emulate the GTT MMIO register read * * Returns: * Zero on success, error code if failed. */ int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; int ret; if (bytes != 4 && bytes != 8) return -EINVAL; off -= info->gtt_start_offset; ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); return ret; } static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *entry) { struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; unsigned long pfn; pfn = pte_ops->get_pfn(entry); if (pfn != vgpu->gvt->gtt.scratch_mfn) intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); } static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { struct intel_gvt *gvt = vgpu->gvt; const struct intel_gvt_device_info *info = &gvt->device_info; struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; unsigned long gma, gfn; struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; dma_addr_t dma_addr; int ret; struct intel_gvt_partial_pte *partial_pte, *pos, *n; bool partial_update = false; if (bytes != 4 && bytes != 8) return -EINVAL; gma = g_gtt_index << I915_GTT_PAGE_SHIFT; /* the VM may configure the whole GM space when ballooning is used */ if (!vgpu_gmadr_is_valid(vgpu, gma)) return 0; e.type = GTT_TYPE_GGTT_PTE; memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, bytes); /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes * write, save the first 4 bytes in a list and update virtual * PTE. Only update shadow PTE when the second 4 bytes comes. */ if (bytes < info->gtt_entry_size) { bool found = false; list_for_each_entry_safe(pos, n, &ggtt_mm->ggtt_mm.partial_pte_list, list) { if (g_gtt_index == pos->offset >> info->gtt_entry_size_shift) { if (off != pos->offset) { /* the second partial part*/ int last_off = pos->offset & (info->gtt_entry_size - 1); memcpy((void *)&e.val64 + last_off, (void *)&pos->data + last_off, bytes); list_del(&pos->list); kfree(pos); found = true; break; } /* update of the first partial part */ pos->data = e.val64; ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); return 0; } } if (!found) { /* the first partial part */ partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); if (!partial_pte) return -ENOMEM; partial_pte->offset = off; partial_pte->data = e.val64; list_add_tail(&partial_pte->list, &ggtt_mm->ggtt_mm.partial_pte_list); partial_update = true; } } if (!partial_update && (ops->test_present(&e))) { gfn = ops->get_pfn(&e); m.val64 = e.val64; m.type = e.type; /* one PTE update may be issued in multiple writes and the * first write may not construct a valid gfn */ if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { ops->set_pfn(&m, gvt->gtt.scratch_mfn); goto out; } ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, &dma_addr); if (ret) { gvt_vgpu_err("fail to populate guest ggtt entry\n"); /* guest driver may read/write the entry when partial * update the entry in this situation p2m will fail * settting the shadow entry to point to a scratch page */ ops->set_pfn(&m, gvt->gtt.scratch_mfn); } else ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); } else { ops->set_pfn(&m, gvt->gtt.scratch_mfn); ops->clear_present(&m); } out: ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); ggtt_invalidate_pte(vgpu, &e); ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); ggtt_invalidate(gvt->gt); return 0; } /* * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write * @vgpu: a vGPU * @off: register offset * @p_data: data from guest write * @bytes: data length * * This function is used to emulate the GTT MMIO register write * * Returns: * Zero on success, error code if failed. */ int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; int ret; struct intel_vgpu_submission *s = &vgpu->submission; struct intel_engine_cs *engine; int i; if (bytes != 4 && bytes != 8) return -EINVAL; off -= info->gtt_start_offset; ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); /* if ggtt of last submitted context is written, * that context is probably got unpinned. * Set last shadowed ctx to invalid. */ for_each_engine(engine, vgpu->gvt->gt, i) { if (!s->last_ctx[i].valid) continue; if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift)) s->last_ctx[i].valid = false; } return ret; } static int alloc_scratch_pages(struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; struct intel_vgpu_gtt *gtt = &vgpu->gtt; struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; int page_entry_num = I915_GTT_PAGE_SIZE >> vgpu->gvt->device_info.gtt_entry_size_shift; void *scratch_pt; int i; struct device *dev = vgpu->gvt->gt->i915->drm.dev; dma_addr_t daddr; if (drm_WARN_ON(&i915->drm, type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) return -EINVAL; scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); if (!scratch_pt) { gvt_vgpu_err("fail to allocate scratch page\n"); return -ENOMEM; } daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, daddr)) { gvt_vgpu_err("fail to dmamap scratch_pt\n"); __free_page(virt_to_page(scratch_pt)); return -ENOMEM; } gtt->scratch_pt[type].page_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); gtt->scratch_pt[type].page = virt_to_page(scratch_pt); gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", vgpu->id, type, gtt->scratch_pt[type].page_mfn); /* Build the tree by full filled the scratch pt with the entries which * point to the next level scratch pt or scratch page. The * scratch_pt[type] indicate the scratch pt/scratch page used by the * 'type' pt. * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. */ if (type > GTT_TYPE_PPGTT_PTE_PT) { struct intel_gvt_gtt_entry se; memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); se.type = get_entry_type(type - 1); ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); /* The entry parameters like present/writeable/cache type * set to the same as i915's scratch page tree. */ se.val64 |= _PAGE_PRESENT | _PAGE_RW; if (type == GTT_TYPE_PPGTT_PDE_PT) se.val64 |= PPAT_CACHED; for (i = 0; i < page_entry_num; i++) ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); } return 0; } static int release_scratch_page_tree(struct intel_vgpu *vgpu) { int i; struct device *dev = vgpu->gvt->gt->i915->drm.dev; dma_addr_t daddr; for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { if (vgpu->gtt.scratch_pt[i].page != NULL) { daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << I915_GTT_PAGE_SHIFT); dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); __free_page(vgpu->gtt.scratch_pt[i].page); vgpu->gtt.scratch_pt[i].page = NULL; vgpu->gtt.scratch_pt[i].page_mfn = 0; } } return 0; } static int create_scratch_page_tree(struct intel_vgpu *vgpu) { int i, ret; for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { ret = alloc_scratch_pages(vgpu, i); if (ret) goto err; } return 0; err: release_scratch_page_tree(vgpu); return ret; } /** * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization * @vgpu: a vGPU * * This function is used to initialize per-vGPU graphics memory virtualization * components. * * Returns: * Zero on success, error code if failed. */ int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) { struct intel_vgpu_gtt *gtt = &vgpu->gtt; INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); INIT_LIST_HEAD(>t->ppgtt_mm_list_head); INIT_LIST_HEAD(>t->oos_page_list_head); INIT_LIST_HEAD(>t->post_shadow_list_head); gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); if (IS_ERR(gtt->ggtt_mm)) { gvt_vgpu_err("fail to create mm for ggtt.\n"); return PTR_ERR(gtt->ggtt_mm); } intel_vgpu_reset_ggtt(vgpu, false); INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); return create_scratch_page_tree(vgpu); } void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) { struct list_head *pos, *n; struct intel_vgpu_mm *mm; list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); intel_vgpu_destroy_mm(mm); } if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) gvt_err("vgpu ppgtt mm is not fully destroyed\n"); if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { gvt_err("Why we still has spt not freed?\n"); ppgtt_free_all_spt(vgpu); } } static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) { struct intel_gvt_partial_pte *pos, *next; list_for_each_entry_safe(pos, next, &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, list) { gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", pos->offset, pos->data); kfree(pos); } intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); vgpu->gtt.ggtt_mm = NULL; } /** * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization * @vgpu: a vGPU * * This function is used to clean up per-vGPU graphics memory virtualization * components. * * Returns: * Zero on success, error code if failed. */ void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) { intel_vgpu_destroy_all_ppgtt_mm(vgpu); intel_vgpu_destroy_ggtt_mm(vgpu); release_scratch_page_tree(vgpu); } static void clean_spt_oos(struct intel_gvt *gvt) { struct intel_gvt_gtt *gtt = &gvt->gtt; struct list_head *pos, *n; struct intel_vgpu_oos_page *oos_page; WARN(!list_empty(>t->oos_page_use_list_head), "someone is still using oos page\n"); list_for_each_safe(pos, n, >t->oos_page_free_list_head) { oos_page = container_of(pos, struct intel_vgpu_oos_page, list); list_del(&oos_page->list); free_page((unsigned long)oos_page->mem); kfree(oos_page); } } static int setup_spt_oos(struct intel_gvt *gvt) { struct intel_gvt_gtt *gtt = &gvt->gtt; struct intel_vgpu_oos_page *oos_page; int i; int ret; INIT_LIST_HEAD(>t->oos_page_free_list_head); INIT_LIST_HEAD(>t->oos_page_use_list_head); for (i = 0; i < preallocated_oos_pages; i++) { oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); if (!oos_page) { ret = -ENOMEM; goto fail; } oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); if (!oos_page->mem) { ret = -ENOMEM; kfree(oos_page); goto fail; } INIT_LIST_HEAD(&oos_page->list); INIT_LIST_HEAD(&oos_page->vm_list); oos_page->id = i; list_add_tail(&oos_page->list, >t->oos_page_free_list_head); } gvt_dbg_mm("%d oos pages preallocated\n", i); return 0; fail: clean_spt_oos(gvt); return ret; } /** * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object * @vgpu: a vGPU * @pdps: pdp root array * * This function is used to find a PPGTT mm object from mm object pool * * Returns: * pointer to mm object on success, NULL if failed. */ struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) { struct intel_vgpu_mm *mm; struct list_head *pos; list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); switch (mm->ppgtt_mm.root_entry_type) { case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) return mm; break; case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, sizeof(mm->ppgtt_mm.guest_pdps))) return mm; break; default: GEM_BUG_ON(1); } } return NULL; } /** * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. * @vgpu: a vGPU * @root_entry_type: ppgtt root entry type * @pdps: guest pdps * * This function is used to find or create a PPGTT mm object from a guest. * * Returns: * Zero on success, negative error code if failed. */ struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) { struct intel_vgpu_mm *mm; mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); if (mm) { intel_vgpu_mm_get(mm); } else { mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); if (IS_ERR(mm)) gvt_vgpu_err("fail to create mm\n"); } return mm; } /** * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. * @vgpu: a vGPU * @pdps: guest pdps * * This function is used to find a PPGTT mm object from a guest and destroy it. * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) { struct intel_vgpu_mm *mm; mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); if (!mm) { gvt_vgpu_err("fail to find ppgtt instance.\n"); return -EINVAL; } intel_vgpu_mm_put(mm); return 0; } /** * intel_gvt_init_gtt - initialize mm components of a GVT device * @gvt: GVT device * * This function is called at the initialization stage, to initialize * the mm components of a GVT device. * * Returns: * zero on success, negative error code if failed. */ int intel_gvt_init_gtt(struct intel_gvt *gvt) { int ret; void *page; struct device *dev = gvt->gt->i915->drm.dev; dma_addr_t daddr; gvt_dbg_core("init gtt\n"); gvt->gtt.pte_ops = &gen8_gtt_pte_ops; gvt->gtt.gma_ops = &gen8_gtt_gma_ops; page = (void *)get_zeroed_page(GFP_KERNEL); if (!page) { gvt_err("fail to allocate scratch ggtt page\n"); return -ENOMEM; } daddr = dma_map_page(dev, virt_to_page(page), 0, 4096, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, daddr)) { gvt_err("fail to dmamap scratch ggtt page\n"); __free_page(virt_to_page(page)); return -ENOMEM; } gvt->gtt.scratch_page = virt_to_page(page); gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); if (enable_out_of_sync) { ret = setup_spt_oos(gvt); if (ret) { gvt_err("fail to initialize SPT oos\n"); dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); __free_page(gvt->gtt.scratch_page); return ret; } } INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); mutex_init(&gvt->gtt.ppgtt_mm_lock); return 0; } /** * intel_gvt_clean_gtt - clean up mm components of a GVT device * @gvt: GVT device * * This function is called at the driver unloading stage, to clean up the * the mm components of a GVT device. * */ void intel_gvt_clean_gtt(struct intel_gvt *gvt) { struct device *dev = gvt->gt->i915->drm.dev; dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << I915_GTT_PAGE_SHIFT); dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); __free_page(gvt->gtt.scratch_page); if (enable_out_of_sync) clean_spt_oos(gvt); } /** * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances * @vgpu: a vGPU * * This function is called when invalidate all PPGTT instances of a vGPU. * */ void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) { struct list_head *pos, *n; struct intel_vgpu_mm *mm; list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); if (mm->type == INTEL_GVT_MM_PPGTT) { mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); list_del_init(&mm->ppgtt_mm.lru_list); mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); if (mm->ppgtt_mm.shadowed) invalidate_ppgtt_mm(mm); } } } /** * intel_vgpu_reset_ggtt - reset the GGTT entry * @vgpu: a vGPU * @invalidate_old: invalidate old entries * * This function is called at the vGPU create stage * to reset all the GGTT entries. * */ void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; struct intel_gvt_gtt_entry old_entry; u32 index; u32 num_entries; pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); pte_ops->set_present(&entry); index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; while (num_entries--) { if (invalidate_old) { ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); ggtt_invalidate_pte(vgpu, &old_entry); } ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); } index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; while (num_entries--) { if (invalidate_old) { ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); ggtt_invalidate_pte(vgpu, &old_entry); } ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); } ggtt_invalidate(gvt->gt); } /** * intel_vgpu_reset_gtt - reset the all GTT related status * @vgpu: a vGPU * * This function is called from vfio core to reset reset all * GTT related status, including GGTT, PPGTT, scratch page. * */ void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) { /* Shadow pages are only created when there is no page * table tracking data, so remove page tracking data after * removing the shadow pages. */ intel_vgpu_destroy_all_ppgtt_mm(vgpu); intel_vgpu_reset_ggtt(vgpu, true); } /** * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries * @gvt: intel gvt device * * This function is called at driver resume stage to restore * GGTT entries of every vGPU. * */ void intel_gvt_restore_ggtt(struct intel_gvt *gvt) { struct intel_vgpu *vgpu; struct intel_vgpu_mm *mm; int id; gen8_pte_t pte; u32 idx, num_low, num_hi, offset; /* Restore dirty host ggtt for all vGPUs */ idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { mm = vgpu->gtt.ggtt_mm; num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; for (idx = 0; idx < num_low; idx++) { pte = mm->ggtt_mm.host_ggtt_aperture[idx]; if (pte & _PAGE_PRESENT) write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); } num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; for (idx = 0; idx < num_hi; idx++) { pte = mm->ggtt_mm.host_ggtt_hidden[idx]; if (pte & _PAGE_PRESENT) write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); } } }