/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include "i915_drv.h" #define _INTEL_BIOS_PRIVATE #include "intel_vbt_defs.h" /** * DOC: Video BIOS Table (VBT) * * The Video BIOS Table, or VBT, provides platform and board specific * configuration information to the driver that is not discoverable or available * through other means. The configuration is mostly related to display * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in * the PCI ROM. * * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that * contain the actual configuration information. The VBT Header, and thus the * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the * BDB Header. The data blocks are concatenated after the BDB Header. The data * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of * data. (Block 53, the MIPI Sequence Block is an exception.) * * The driver parses the VBT during load. The relevant information is stored in * driver private data for ease of use, and the actual VBT is not read after * that. */ #define SLAVE_ADDR1 0x70 #define SLAVE_ADDR2 0x72 /* Get BDB block size given a pointer to Block ID. */ static u32 _get_blocksize(const u8 *block_base) { /* The MIPI Sequence Block v3+ has a separate size field. */ if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) return *((const u32 *)(block_base + 4)); else return *((const u16 *)(block_base + 1)); } /* Get BDB block size give a pointer to data after Block ID and Block Size. */ static u32 get_blocksize(const void *block_data) { return _get_blocksize(block_data - 3); } static const void * find_section(const void *_bdb, int section_id) { const struct bdb_header *bdb = _bdb; const u8 *base = _bdb; int index = 0; u32 total, current_size; u8 current_id; /* skip to first section */ index += bdb->header_size; total = bdb->bdb_size; /* walk the sections looking for section_id */ while (index + 3 < total) { current_id = *(base + index); current_size = _get_blocksize(base + index); index += 3; if (index + current_size > total) return NULL; if (current_id == section_id) return base + index; index += current_size; } return NULL; } static void fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, const struct lvds_dvo_timing *dvo_timing) { panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo; panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + ((dvo_timing->hsync_pulse_width_hi << 8) | dvo_timing->hsync_pulse_width_lo); panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo; panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + ((dvo_timing->vsync_pulse_width_hi << 4) | dvo_timing->vsync_pulse_width_lo); panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); panel_fixed_mode->clock = dvo_timing->clock * 10; panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; if (dvo_timing->hsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; if (dvo_timing->vsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | dvo_timing->himage_lo; panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | dvo_timing->vimage_lo; /* Some VBTs have bogus h/vtotal values */ if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; drm_mode_set_name(panel_fixed_mode); } static const struct lvds_dvo_timing * get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data, const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs, int index) { /* * the size of fp_timing varies on the different platform. * So calculate the DVO timing relative offset in LVDS data * entry to get the DVO timing entry */ int lfp_data_size = lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset - lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset; int dvo_timing_offset = lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset - lvds_lfp_data_ptrs->ptr[0].fp_timing_offset; char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index; return (struct lvds_dvo_timing *)(entry + dvo_timing_offset); } /* get lvds_fp_timing entry * this function may return NULL if the corresponding entry is invalid */ static const struct lvds_fp_timing * get_lvds_fp_timing(const struct bdb_header *bdb, const struct bdb_lvds_lfp_data *data, const struct bdb_lvds_lfp_data_ptrs *ptrs, int index) { size_t data_ofs = (const u8 *)data - (const u8 *)bdb; u16 data_size = ((const u16 *)data)[-1]; /* stored in header */ size_t ofs; if (index >= ARRAY_SIZE(ptrs->ptr)) return NULL; ofs = ptrs->ptr[index].fp_timing_offset; if (ofs < data_ofs || ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size) return NULL; return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs); } /* Try to find integrated panel data */ static void parse_lfp_panel_data(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_lvds_options *lvds_options; const struct bdb_lvds_lfp_data *lvds_lfp_data; const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs; const struct lvds_dvo_timing *panel_dvo_timing; const struct lvds_fp_timing *fp_timing; struct drm_display_mode *panel_fixed_mode; int panel_type; int drrs_mode; int ret; lvds_options = find_section(bdb, BDB_LVDS_OPTIONS); if (!lvds_options) return; dev_priv->vbt.lvds_dither = lvds_options->pixel_dither; ret = intel_opregion_get_panel_type(dev_priv); if (ret >= 0) { WARN_ON(ret > 0xf); panel_type = ret; DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type); } else { if (lvds_options->panel_type > 0xf) { DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n", lvds_options->panel_type); return; } panel_type = lvds_options->panel_type; DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type); } dev_priv->vbt.panel_type = panel_type; drrs_mode = (lvds_options->dps_panel_type_bits >> (panel_type * 2)) & MODE_MASK; /* * VBT has static DRRS = 0 and seamless DRRS = 2. * The below piece of code is required to adjust vbt.drrs_type * to match the enum drrs_support_type. */ switch (drrs_mode) { case 0: dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT; DRM_DEBUG_KMS("DRRS supported mode is static\n"); break; case 2: dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT; DRM_DEBUG_KMS("DRRS supported mode is seamless\n"); break; default: dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED; DRM_DEBUG_KMS("DRRS not supported (VBT input)\n"); break; } lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA); if (!lvds_lfp_data) return; lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS); if (!lvds_lfp_data_ptrs) return; dev_priv->vbt.lvds_vbt = 1; panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, lvds_lfp_data_ptrs, panel_type); panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (!panel_fixed_mode) return; fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n"); drm_mode_debug_printmodeline(panel_fixed_mode); fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data, lvds_lfp_data_ptrs, panel_type); if (fp_timing) { /* check the resolution, just to be sure */ if (fp_timing->x_res == panel_fixed_mode->hdisplay && fp_timing->y_res == panel_fixed_mode->vdisplay) { dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val; DRM_DEBUG_KMS("VBT initial LVDS value %x\n", dev_priv->vbt.bios_lvds_val); } } } static void parse_lfp_backlight(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_lfp_backlight_data *backlight_data; const struct bdb_lfp_backlight_data_entry *entry; int panel_type = dev_priv->vbt.panel_type; backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT); if (!backlight_data) return; if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n", backlight_data->entry_size); return; } entry = &backlight_data->data[panel_type]; dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; if (!dev_priv->vbt.backlight.present) { DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n", entry->type); return; } dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; if (bdb->version >= 191 && get_blocksize(backlight_data) >= sizeof(*backlight_data)) { const struct bdb_lfp_backlight_control_method *method; method = &backlight_data->backlight_control[panel_type]; dev_priv->vbt.backlight.type = method->type; dev_priv->vbt.backlight.controller = method->controller; } dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm; dev_priv->vbt.backlight.min_brightness = entry->min_brightness; DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, " "active %s, min brightness %u, level %u, controller %u\n", dev_priv->vbt.backlight.pwm_freq_hz, dev_priv->vbt.backlight.active_low_pwm ? "low" : "high", dev_priv->vbt.backlight.min_brightness, backlight_data->level[panel_type], dev_priv->vbt.backlight.controller); } /* Try to find sdvo panel data */ static void parse_sdvo_panel_data(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct lvds_dvo_timing *dvo_timing; struct drm_display_mode *panel_fixed_mode; int index; index = i915.vbt_sdvo_panel_type; if (index == -2) { DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n"); return; } if (index == -1) { const struct bdb_sdvo_lvds_options *sdvo_lvds_options; sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS); if (!sdvo_lvds_options) return; index = sdvo_lvds_options->panel_type; } dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS); if (!dvo_timing) return; panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (!panel_fixed_mode) return; fill_detail_timing_data(panel_fixed_mode, dvo_timing + index); dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n"); drm_mode_debug_printmodeline(panel_fixed_mode); } static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv, bool alternate) { switch (INTEL_INFO(dev_priv)->gen) { case 2: return alternate ? 66667 : 48000; case 3: case 4: return alternate ? 100000 : 96000; default: return alternate ? 100000 : 120000; } } static void parse_general_features(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_general_features *general; general = find_section(bdb, BDB_GENERAL_FEATURES); if (!general) return; dev_priv->vbt.int_tv_support = general->int_tv_support; /* int_crt_support can't be trusted on earlier platforms */ if (bdb->version >= 155 && (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv))) dev_priv->vbt.int_crt_support = general->int_crt_support; dev_priv->vbt.lvds_use_ssc = general->enable_ssc; dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv, general->ssc_freq); dev_priv->vbt.display_clock_mode = general->display_clock_mode; dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", dev_priv->vbt.int_tv_support, dev_priv->vbt.int_crt_support, dev_priv->vbt.lvds_use_ssc, dev_priv->vbt.lvds_ssc_freq, dev_priv->vbt.display_clock_mode, dev_priv->vbt.fdi_rx_polarity_inverted); } static void parse_general_definitions(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_general_definitions *general; general = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (general) { u16 block_size = get_blocksize(general); if (block_size >= sizeof(*general)) { int bus_pin = general->crt_ddc_gmbus_pin; DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin); if (intel_gmbus_is_valid_pin(dev_priv, bus_pin)) dev_priv->vbt.crt_ddc_pin = bus_pin; } else { DRM_DEBUG_KMS("BDB_GD too small (%d). Invalid.\n", block_size); } } } static const union child_device_config * child_device_ptr(const struct bdb_general_definitions *p_defs, int i) { return (const void *) &p_defs->devices[i * p_defs->child_dev_size]; } static void parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { struct sdvo_device_mapping *p_mapping; const struct bdb_general_definitions *p_defs; const struct old_child_dev_config *child; /* legacy */ int i, child_device_num, count; u16 block_size; p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (!p_defs) { DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n"); return; } /* * Only parse SDVO mappings when the general definitions block child * device size matches that of the *legacy* child device config * struct. Thus, SDVO mapping will be skipped for newer VBT. */ if (p_defs->child_dev_size != sizeof(*child)) { DRM_DEBUG_KMS("Unsupported child device size for SDVO mapping.\n"); return; } /* get the block size of general definitions */ block_size = get_blocksize(p_defs); /* get the number of child device */ child_device_num = (block_size - sizeof(*p_defs)) / p_defs->child_dev_size; count = 0; for (i = 0; i < child_device_num; i++) { child = &child_device_ptr(p_defs, i)->old; if (!child->device_type) { /* skip the device block if device type is invalid */ continue; } if (child->slave_addr != SLAVE_ADDR1 && child->slave_addr != SLAVE_ADDR2) { /* * If the slave address is neither 0x70 nor 0x72, * it is not a SDVO device. Skip it. */ continue; } if (child->dvo_port != DEVICE_PORT_DVOB && child->dvo_port != DEVICE_PORT_DVOC) { /* skip the incorrect SDVO port */ DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n"); continue; } DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on" " %s port\n", child->slave_addr, (child->dvo_port == DEVICE_PORT_DVOB) ? "SDVOB" : "SDVOC"); p_mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1]; if (!p_mapping->initialized) { p_mapping->dvo_port = child->dvo_port; p_mapping->slave_addr = child->slave_addr; p_mapping->dvo_wiring = child->dvo_wiring; p_mapping->ddc_pin = child->ddc_pin; p_mapping->i2c_pin = child->i2c_pin; p_mapping->initialized = 1; DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", p_mapping->dvo_port, p_mapping->slave_addr, p_mapping->dvo_wiring, p_mapping->ddc_pin, p_mapping->i2c_pin); } else { DRM_DEBUG_KMS("Maybe one SDVO port is shared by " "two SDVO device.\n"); } if (child->slave2_addr) { /* Maybe this is a SDVO device with multiple inputs */ /* And the mapping info is not added */ DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this" " is a SDVO device with multiple inputs.\n"); } count++; } if (!count) { /* No SDVO device info is found */ DRM_DEBUG_KMS("No SDVO device info is found in VBT\n"); } return; } static void parse_driver_features(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_driver_features *driver; driver = find_section(bdb, BDB_DRIVER_FEATURES); if (!driver) return; if (driver->lvds_config == BDB_DRIVER_FEATURE_EDP) dev_priv->vbt.edp.support = 1; DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled); /* * If DRRS is not supported, drrs_type has to be set to 0. * This is because, VBT is configured in such a way that * static DRRS is 0 and DRRS not supported is represented by * driver->drrs_enabled=false */ if (!driver->drrs_enabled) dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED; } static void parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_edp *edp; const struct edp_power_seq *edp_pps; const struct edp_link_params *edp_link_params; int panel_type = dev_priv->vbt.panel_type; edp = find_section(bdb, BDB_EDP); if (!edp) { if (dev_priv->vbt.edp.support) DRM_DEBUG_KMS("No eDP BDB found but eDP panel supported.\n"); return; } switch ((edp->color_depth >> (panel_type * 2)) & 3) { case EDP_18BPP: dev_priv->vbt.edp.bpp = 18; break; case EDP_24BPP: dev_priv->vbt.edp.bpp = 24; break; case EDP_30BPP: dev_priv->vbt.edp.bpp = 30; break; } /* Get the eDP sequencing and link info */ edp_pps = &edp->power_seqs[panel_type]; edp_link_params = &edp->link_params[panel_type]; dev_priv->vbt.edp.pps = *edp_pps; switch (edp_link_params->rate) { case EDP_RATE_1_62: dev_priv->vbt.edp.rate = DP_LINK_BW_1_62; break; case EDP_RATE_2_7: dev_priv->vbt.edp.rate = DP_LINK_BW_2_7; break; default: DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n", edp_link_params->rate); break; } switch (edp_link_params->lanes) { case EDP_LANE_1: dev_priv->vbt.edp.lanes = 1; break; case EDP_LANE_2: dev_priv->vbt.edp.lanes = 2; break; case EDP_LANE_4: dev_priv->vbt.edp.lanes = 4; break; default: DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n", edp_link_params->lanes); break; } switch (edp_link_params->preemphasis) { case EDP_PREEMPHASIS_NONE: dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; break; case EDP_PREEMPHASIS_3_5dB: dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; break; case EDP_PREEMPHASIS_6dB: dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; break; case EDP_PREEMPHASIS_9_5dB: dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; break; default: DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n", edp_link_params->preemphasis); break; } switch (edp_link_params->vswing) { case EDP_VSWING_0_4V: dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; break; case EDP_VSWING_0_6V: dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; break; case EDP_VSWING_0_8V: dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; break; case EDP_VSWING_1_2V: dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; break; default: DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n", edp_link_params->vswing); break; } if (bdb->version >= 173) { uint8_t vswing; /* Don't read from VBT if module parameter has valid value*/ if (i915.edp_vswing) { dev_priv->vbt.edp.low_vswing = i915.edp_vswing == 1; } else { vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; dev_priv->vbt.edp.low_vswing = vswing == 0; } } } static void parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_psr *psr; const struct psr_table *psr_table; int panel_type = dev_priv->vbt.panel_type; psr = find_section(bdb, BDB_PSR); if (!psr) { DRM_DEBUG_KMS("No PSR BDB found.\n"); return; } psr_table = &psr->psr_table[panel_type]; dev_priv->vbt.psr.full_link = psr_table->full_link; dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; /* Allowed VBT values goes from 0 to 15 */ dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; switch (psr_table->lines_to_wait) { case 0: dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT; break; case 1: dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT; break; case 2: dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT; break; case 3: dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT; break; default: DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n", psr_table->lines_to_wait); break; } dev_priv->vbt.psr.tp1_wakeup_time = psr_table->tp1_wakeup_time; dev_priv->vbt.psr.tp2_tp3_wakeup_time = psr_table->tp2_tp3_wakeup_time; } static void parse_mipi_config(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_mipi_config *start; const struct mipi_config *config; const struct mipi_pps_data *pps; int panel_type = dev_priv->vbt.panel_type; /* parse MIPI blocks only if LFP type is MIPI */ if (!intel_bios_is_dsi_present(dev_priv, NULL)) return; /* Initialize this to undefined indicating no generic MIPI support */ dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; /* Block #40 is already parsed and panel_fixed_mode is * stored in dev_priv->lfp_lvds_vbt_mode * resuse this when needed */ /* Parse #52 for panel index used from panel_type already * parsed */ start = find_section(bdb, BDB_MIPI_CONFIG); if (!start) { DRM_DEBUG_KMS("No MIPI config BDB found"); return; } DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n", panel_type); /* * get hold of the correct configuration block and pps data as per * the panel_type as index */ config = &start->config[panel_type]; pps = &start->pps[panel_type]; /* store as of now full data. Trim when we realise all is not needed */ dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); if (!dev_priv->vbt.dsi.config) return; dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); if (!dev_priv->vbt.dsi.pps) { kfree(dev_priv->vbt.dsi.config); return; } /* * These fields are introduced from the VBT version 197 onwards, * so making sure that these bits are set zero in the previous * versions. */ if (dev_priv->vbt.dsi.config->dual_link && bdb->version < 197) { dev_priv->vbt.dsi.config->dl_dcs_cabc_ports = 0; dev_priv->vbt.dsi.config->dl_dcs_backlight_ports = 0; } /* We have mandatory mipi config blocks. Initialize as generic panel */ dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; } /* Find the sequence block and size for the given panel. */ static const u8 * find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, u16 panel_id, u32 *seq_size) { u32 total = get_blocksize(sequence); const u8 *data = &sequence->data[0]; u8 current_id; u32 current_size; int header_size = sequence->version >= 3 ? 5 : 3; int index = 0; int i; /* skip new block size */ if (sequence->version >= 3) data += 4; for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { if (index + header_size > total) { DRM_ERROR("Invalid sequence block (header)\n"); return NULL; } current_id = *(data + index); if (sequence->version >= 3) current_size = *((const u32 *)(data + index + 1)); else current_size = *((const u16 *)(data + index + 1)); index += header_size; if (index + current_size > total) { DRM_ERROR("Invalid sequence block\n"); return NULL; } if (current_id == panel_id) { *seq_size = current_size; return data + index; } index += current_size; } DRM_ERROR("Sequence block detected but no valid configuration\n"); return NULL; } static int goto_next_sequence(const u8 *data, int index, int total) { u16 len; /* Skip Sequence Byte. */ for (index = index + 1; index < total; index += len) { u8 operation_byte = *(data + index); index++; switch (operation_byte) { case MIPI_SEQ_ELEM_END: return index; case MIPI_SEQ_ELEM_SEND_PKT: if (index + 4 > total) return 0; len = *((const u16 *)(data + index + 2)) + 4; break; case MIPI_SEQ_ELEM_DELAY: len = 4; break; case MIPI_SEQ_ELEM_GPIO: len = 2; break; case MIPI_SEQ_ELEM_I2C: if (index + 7 > total) return 0; len = *(data + index + 6) + 7; break; default: DRM_ERROR("Unknown operation byte\n"); return 0; } } return 0; } static int goto_next_sequence_v3(const u8 *data, int index, int total) { int seq_end; u16 len; u32 size_of_sequence; /* * Could skip sequence based on Size of Sequence alone, but also do some * checking on the structure. */ if (total < 5) { DRM_ERROR("Too small sequence size\n"); return 0; } /* Skip Sequence Byte. */ index++; /* * Size of Sequence. Excludes the Sequence Byte and the size itself, * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END * byte. */ size_of_sequence = *((const uint32_t *)(data + index)); index += 4; seq_end = index + size_of_sequence; if (seq_end > total) { DRM_ERROR("Invalid sequence size\n"); return 0; } for (; index < total; index += len) { u8 operation_byte = *(data + index); index++; if (operation_byte == MIPI_SEQ_ELEM_END) { if (index != seq_end) { DRM_ERROR("Invalid element structure\n"); return 0; } return index; } len = *(data + index); index++; /* * FIXME: Would be nice to check elements like for v1/v2 in * goto_next_sequence() above. */ switch (operation_byte) { case MIPI_SEQ_ELEM_SEND_PKT: case MIPI_SEQ_ELEM_DELAY: case MIPI_SEQ_ELEM_GPIO: case MIPI_SEQ_ELEM_I2C: case MIPI_SEQ_ELEM_SPI: case MIPI_SEQ_ELEM_PMIC: break; default: DRM_ERROR("Unknown operation byte %u\n", operation_byte); break; } } return 0; } static void parse_mipi_sequence(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { int panel_type = dev_priv->vbt.panel_type; const struct bdb_mipi_sequence *sequence; const u8 *seq_data; u32 seq_size; u8 *data; int index = 0; /* Only our generic panel driver uses the sequence block. */ if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) return; sequence = find_section(bdb, BDB_MIPI_SEQUENCE); if (!sequence) { DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n"); return; } /* Fail gracefully for forward incompatible sequence block. */ if (sequence->version >= 4) { DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n", sequence->version); return; } DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version); seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); if (!seq_data) return; data = kmemdup(seq_data, seq_size, GFP_KERNEL); if (!data) return; /* Parse the sequences, store pointers to each sequence. */ for (;;) { u8 seq_id = *(data + index); if (seq_id == MIPI_SEQ_END) break; if (seq_id >= MIPI_SEQ_MAX) { DRM_ERROR("Unknown sequence %u\n", seq_id); goto err; } /* Log about presence of sequences we won't run. */ if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id); dev_priv->vbt.dsi.sequence[seq_id] = data + index; if (sequence->version >= 3) index = goto_next_sequence_v3(data, index, seq_size); else index = goto_next_sequence(data, index, seq_size); if (!index) { DRM_ERROR("Invalid sequence %u\n", seq_id); goto err; } } dev_priv->vbt.dsi.data = data; dev_priv->vbt.dsi.size = seq_size; dev_priv->vbt.dsi.seq_version = sequence->version; DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n"); return; err: kfree(data); memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence)); } static u8 translate_iboost(u8 val) { static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ if (val >= ARRAY_SIZE(mapping)) { DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); return 0; } return mapping[val]; } static void sanitize_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { const struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; enum port p; if (!info->alternate_ddc_pin) return; for_each_port_masked(p, (1 << port) - 1) { struct ddi_vbt_port_info *i = &dev_priv->vbt.ddi_port_info[p]; if (info->alternate_ddc_pin != i->alternate_ddc_pin) continue; DRM_DEBUG_KMS("port %c trying to use the same DDC pin (0x%x) as port %c, " "disabling port %c DVI/HDMI support\n", port_name(p), i->alternate_ddc_pin, port_name(port), port_name(p)); /* * If we have multiple ports supposedly sharing the * pin, then dvi/hdmi couldn't exist on the shared * port. Otherwise they share the same ddc bin and * system couldn't communicate with them separately. * * Due to parsing the ports in alphabetical order, * a higher port will always clobber a lower one. */ i->supports_dvi = false; i->supports_hdmi = false; i->alternate_ddc_pin = 0; } } static void sanitize_aux_ch(struct drm_i915_private *dev_priv, enum port port) { const struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; enum port p; if (!info->alternate_aux_channel) return; for_each_port_masked(p, (1 << port) - 1) { struct ddi_vbt_port_info *i = &dev_priv->vbt.ddi_port_info[p]; if (info->alternate_aux_channel != i->alternate_aux_channel) continue; DRM_DEBUG_KMS("port %c trying to use the same AUX CH (0x%x) as port %c, " "disabling port %c DP support\n", port_name(p), i->alternate_aux_channel, port_name(port), port_name(p)); /* * If we have multiple ports supposedlt sharing the * aux channel, then DP couldn't exist on the shared * port. Otherwise they share the same aux channel * and system couldn't communicate with them separately. * * Due to parsing the ports in alphabetical order, * a higher port will always clobber a lower one. */ i->supports_dp = false; i->alternate_aux_channel = 0; } } static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port, const struct bdb_header *bdb) { union child_device_config *it, *child = NULL; struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; uint8_t hdmi_level_shift; int i, j; bool is_dvi, is_hdmi, is_dp, is_edp, is_crt; uint8_t aux_channel, ddc_pin; /* Each DDI port can have more than one value on the "DVO Port" field, * so look for all the possible values for each port and abort if more * than one is found. */ int dvo_ports[][3] = { {DVO_PORT_HDMIA, DVO_PORT_DPA, -1}, {DVO_PORT_HDMIB, DVO_PORT_DPB, -1}, {DVO_PORT_HDMIC, DVO_PORT_DPC, -1}, {DVO_PORT_HDMID, DVO_PORT_DPD, -1}, {DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE}, }; /* Find the child device to use, abort if more than one found. */ for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { it = dev_priv->vbt.child_dev + i; for (j = 0; j < 3; j++) { if (dvo_ports[port][j] == -1) break; if (it->common.dvo_port == dvo_ports[port][j]) { if (child) { DRM_DEBUG_KMS("More than one child device for port %c in VBT.\n", port_name(port)); return; } child = it; } } } if (!child) return; aux_channel = child->common.aux_channel; ddc_pin = child->common.ddc_pin; is_dvi = child->common.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; is_dp = child->common.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; is_crt = child->common.device_type & DEVICE_TYPE_ANALOG_OUTPUT; is_hdmi = is_dvi && (child->common.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; is_edp = is_dp && (child->common.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR); info->supports_dvi = is_dvi; info->supports_hdmi = is_hdmi; info->supports_dp = is_dp; info->supports_edp = is_edp; DRM_DEBUG_KMS("Port %c VBT info: DP:%d HDMI:%d DVI:%d EDP:%d CRT:%d\n", port_name(port), is_dp, is_hdmi, is_dvi, is_edp, is_crt); if (is_edp && is_dvi) DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n", port_name(port)); if (is_crt && port != PORT_E) DRM_DEBUG_KMS("Port %c is analog\n", port_name(port)); if (is_crt && (is_dvi || is_dp)) DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n", port_name(port)); if (is_dvi && (port == PORT_A || port == PORT_E)) DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port)); if (!is_dvi && !is_dp && !is_crt) DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n", port_name(port)); if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E)) DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port)); if (is_dvi) { info->alternate_ddc_pin = ddc_pin; /* * All VBTs that we got so far for B Stepping has this * information wrong for Port D. So, let's just ignore for now. */ if (IS_CNL_REVID(dev_priv, CNL_REVID_B0, CNL_REVID_B0) && port == PORT_D) { info->alternate_ddc_pin = 0; } sanitize_ddc_pin(dev_priv, port); } if (is_dp) { info->alternate_aux_channel = aux_channel; sanitize_aux_ch(dev_priv, port); } if (bdb->version >= 158) { /* The VBT HDMI level shift values match the table we have. */ hdmi_level_shift = child->raw[7] & 0xF; DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n", port_name(port), hdmi_level_shift); info->hdmi_level_shift = hdmi_level_shift; } /* Parse the I_boost config for SKL and above */ if (bdb->version >= 196 && child->common.iboost) { info->dp_boost_level = translate_iboost(child->common.iboost_level & 0xF); DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n", port_name(port), info->dp_boost_level); info->hdmi_boost_level = translate_iboost(child->common.iboost_level >> 4); DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n", port_name(port), info->hdmi_boost_level); } } static void parse_ddi_ports(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { enum port port; if (!HAS_DDI(dev_priv)) return; if (!dev_priv->vbt.child_dev_num) return; if (bdb->version < 155) return; for (port = PORT_A; port < I915_MAX_PORTS; port++) parse_ddi_port(dev_priv, port, bdb); } static void parse_device_mapping(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) { const struct bdb_general_definitions *p_defs; const union child_device_config *p_child; union child_device_config *child_dev_ptr; int i, child_device_num, count; u8 expected_size; u16 block_size; p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (!p_defs) { DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n"); return; } if (bdb->version < 106) { expected_size = 22; } else if (bdb->version < 111) { expected_size = 27; } else if (bdb->version < 195) { BUILD_BUG_ON(sizeof(struct old_child_dev_config) != 33); expected_size = sizeof(struct old_child_dev_config); } else if (bdb->version == 195) { expected_size = 37; } else if (bdb->version <= 197) { expected_size = 38; } else { expected_size = 38; BUILD_BUG_ON(sizeof(*p_child) < 38); DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n", bdb->version, expected_size); } /* Flag an error for unexpected size, but continue anyway. */ if (p_defs->child_dev_size != expected_size) DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n", p_defs->child_dev_size, expected_size, bdb->version); /* The legacy sized child device config is the minimum we need. */ if (p_defs->child_dev_size < sizeof(struct old_child_dev_config)) { DRM_DEBUG_KMS("Child device config size %u is too small.\n", p_defs->child_dev_size); return; } /* get the block size of general definitions */ block_size = get_blocksize(p_defs); /* get the number of child device */ child_device_num = (block_size - sizeof(*p_defs)) / p_defs->child_dev_size; count = 0; /* get the number of child device that is present */ for (i = 0; i < child_device_num; i++) { p_child = child_device_ptr(p_defs, i); if (!p_child->common.device_type) { /* skip the device block if device type is invalid */ continue; } count++; } if (!count) { DRM_DEBUG_KMS("no child dev is parsed from VBT\n"); return; } dev_priv->vbt.child_dev = kcalloc(count, sizeof(*p_child), GFP_KERNEL); if (!dev_priv->vbt.child_dev) { DRM_DEBUG_KMS("No memory space for child device\n"); return; } dev_priv->vbt.child_dev_num = count; count = 0; for (i = 0; i < child_device_num; i++) { p_child = child_device_ptr(p_defs, i); if (!p_child->common.device_type) { /* skip the device block if device type is invalid */ continue; } child_dev_ptr = dev_priv->vbt.child_dev + count; count++; /* * Copy as much as we know (sizeof) and is available * (child_dev_size) of the child device. Accessing the data must * depend on VBT version. */ memcpy(child_dev_ptr, p_child, min_t(size_t, p_defs->child_dev_size, sizeof(*p_child))); /* * copied full block, now init values when they are not * available in current version */ if (bdb->version < 196) { /* Set default values for bits added from v196 */ child_dev_ptr->common.iboost = 0; child_dev_ptr->common.hpd_invert = 0; } if (bdb->version < 192) child_dev_ptr->common.lspcon = 0; } return; } /* Common defaults which may be overridden by VBT. */ static void init_vbt_defaults(struct drm_i915_private *dev_priv) { enum port port; dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; /* Default to having backlight */ dev_priv->vbt.backlight.present = true; /* LFP panel data */ dev_priv->vbt.lvds_dither = 1; dev_priv->vbt.lvds_vbt = 0; /* SDVO panel data */ dev_priv->vbt.sdvo_lvds_vbt_mode = NULL; /* general features */ dev_priv->vbt.int_tv_support = 1; dev_priv->vbt.int_crt_support = 1; /* Default to using SSC */ dev_priv->vbt.lvds_use_ssc = 1; /* * Core/SandyBridge/IvyBridge use alternative (120MHz) reference * clock for LVDS. */ dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv, !HAS_PCH_SPLIT(dev_priv)); DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq); for (port = PORT_A; port < I915_MAX_PORTS; port++) { struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN; } } /* Defaults to initialize only if there is no VBT. */ static void init_vbt_missing_defaults(struct drm_i915_private *dev_priv) { enum port port; for (port = PORT_A; port < I915_MAX_PORTS; port++) { struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; info->supports_dvi = (port != PORT_A && port != PORT_E); info->supports_hdmi = info->supports_dvi; info->supports_dp = (port != PORT_E); } } static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) { const void *_vbt = vbt; return _vbt + vbt->bdb_offset; } /** * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT * @buf: pointer to a buffer to validate * @size: size of the buffer * * Returns true on valid VBT. */ bool intel_bios_is_valid_vbt(const void *buf, size_t size) { const struct vbt_header *vbt = buf; const struct bdb_header *bdb; if (!vbt) return false; if (sizeof(struct vbt_header) > size) { DRM_DEBUG_DRIVER("VBT header incomplete\n"); return false; } if (memcmp(vbt->signature, "$VBT", 4)) { DRM_DEBUG_DRIVER("VBT invalid signature\n"); return false; } if (range_overflows_t(size_t, vbt->bdb_offset, sizeof(struct bdb_header), size)) { DRM_DEBUG_DRIVER("BDB header incomplete\n"); return false; } bdb = get_bdb_header(vbt); if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { DRM_DEBUG_DRIVER("BDB incomplete\n"); return false; } return vbt; } static const struct vbt_header *find_vbt(void __iomem *bios, size_t size) { size_t i; /* Scour memory looking for the VBT signature. */ for (i = 0; i + 4 < size; i++) { void *vbt; if (ioread32(bios + i) != *((const u32 *) "$VBT")) continue; /* * This is the one place where we explicitly discard the address * space (__iomem) of the BIOS/VBT. */ vbt = (void __force *) bios + i; if (intel_bios_is_valid_vbt(vbt, size - i)) return vbt; break; } return NULL; } /** * intel_bios_init - find VBT and initialize settings from the BIOS * @dev_priv: i915 device instance * * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also * initialize some defaults if the VBT is not present at all. */ void intel_bios_init(struct drm_i915_private *dev_priv) { struct pci_dev *pdev = dev_priv->drm.pdev; const struct vbt_header *vbt = dev_priv->opregion.vbt; const struct bdb_header *bdb; u8 __iomem *bios = NULL; if (HAS_PCH_NOP(dev_priv)) { DRM_DEBUG_KMS("Skipping VBT init due to disabled display.\n"); return; } init_vbt_defaults(dev_priv); /* If the OpRegion does not have VBT, look in PCI ROM. */ if (!vbt) { size_t size; bios = pci_map_rom(pdev, &size); if (!bios) goto out; vbt = find_vbt(bios, size); if (!vbt) goto out; DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n"); } bdb = get_bdb_header(vbt); DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n", (int)sizeof(vbt->signature), vbt->signature, bdb->version); /* Grab useful general definitions */ parse_general_features(dev_priv, bdb); parse_general_definitions(dev_priv, bdb); parse_lfp_panel_data(dev_priv, bdb); parse_lfp_backlight(dev_priv, bdb); parse_sdvo_panel_data(dev_priv, bdb); parse_sdvo_device_mapping(dev_priv, bdb); parse_device_mapping(dev_priv, bdb); parse_driver_features(dev_priv, bdb); parse_edp(dev_priv, bdb); parse_psr(dev_priv, bdb); parse_mipi_config(dev_priv, bdb); parse_mipi_sequence(dev_priv, bdb); parse_ddi_ports(dev_priv, bdb); out: if (!vbt) { DRM_INFO("Failed to find VBIOS tables (VBT)\n"); init_vbt_missing_defaults(dev_priv); } if (bios) pci_unmap_rom(pdev, bios); } /** * intel_bios_is_tv_present - is integrated TV present in VBT * @dev_priv: i915 device instance * * Return true if TV is present. If no child devices were parsed from VBT, * assume TV is present. */ bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv) { union child_device_config *p_child; int i; if (!dev_priv->vbt.int_tv_support) return false; if (!dev_priv->vbt.child_dev_num) return true; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { p_child = dev_priv->vbt.child_dev + i; /* * If the device type is not TV, continue. */ switch (p_child->old.device_type) { case DEVICE_TYPE_INT_TV: case DEVICE_TYPE_TV: case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: break; default: continue; } /* Only when the addin_offset is non-zero, it is regarded * as present. */ if (p_child->old.addin_offset) return true; } return false; } /** * intel_bios_is_lvds_present - is LVDS present in VBT * @dev_priv: i915 device instance * @i2c_pin: i2c pin for LVDS if present * * Return true if LVDS is present. If no child devices were parsed from VBT, * assume LVDS is present. */ bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin) { int i; if (!dev_priv->vbt.child_dev_num) return true; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { union child_device_config *uchild = dev_priv->vbt.child_dev + i; struct old_child_dev_config *child = &uchild->old; /* If the device type is not LFP, continue. * We have to check both the new identifiers as well as the * old for compatibility with some BIOSes. */ if (child->device_type != DEVICE_TYPE_INT_LFP && child->device_type != DEVICE_TYPE_LFP) continue; if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin)) *i2c_pin = child->i2c_pin; /* However, we cannot trust the BIOS writers to populate * the VBT correctly. Since LVDS requires additional * information from AIM blocks, a non-zero addin offset is * a good indicator that the LVDS is actually present. */ if (child->addin_offset) return true; /* But even then some BIOS writers perform some black magic * and instantiate the device without reference to any * additional data. Trust that if the VBT was written into * the OpRegion then they have validated the LVDS's existence. */ if (dev_priv->opregion.vbt) return true; } return false; } /** * intel_bios_is_port_present - is the specified digital port present * @dev_priv: i915 device instance * @port: port to check * * Return true if the device in %port is present. */ bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port) { static const struct { u16 dp, hdmi; } port_mapping[] = { [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, }, [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, }, [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, }, [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, }, }; int i; /* FIXME maybe deal with port A as well? */ if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping)) return false; if (!dev_priv->vbt.child_dev_num) return false; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { const union child_device_config *p_child = &dev_priv->vbt.child_dev[i]; if ((p_child->common.dvo_port == port_mapping[port].dp || p_child->common.dvo_port == port_mapping[port].hdmi) && (p_child->common.device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING | DEVICE_TYPE_DISPLAYPORT_OUTPUT))) return true; } return false; } /** * intel_bios_is_port_edp - is the device in given port eDP * @dev_priv: i915 device instance * @port: port to check * * Return true if the device in %port is eDP. */ bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port) { union child_device_config *p_child; static const short port_mapping[] = { [PORT_B] = DVO_PORT_DPB, [PORT_C] = DVO_PORT_DPC, [PORT_D] = DVO_PORT_DPD, [PORT_E] = DVO_PORT_DPE, }; int i; if (HAS_DDI(dev_priv)) return dev_priv->vbt.ddi_port_info[port].supports_edp; if (!dev_priv->vbt.child_dev_num) return false; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { p_child = dev_priv->vbt.child_dev + i; if (p_child->common.dvo_port == port_mapping[port] && (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) == (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS)) return true; } return false; } static bool child_dev_is_dp_dual_mode(const union child_device_config *p_child, enum port port) { static const struct { u16 dp, hdmi; } port_mapping[] = { /* * Buggy VBTs may declare DP ports as having * HDMI type dvo_port :( So let's check both. */ [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, }, [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, }, [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, }, [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, }, }; if (port == PORT_A || port >= ARRAY_SIZE(port_mapping)) return false; if ((p_child->common.device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) != (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS)) return false; if (p_child->common.dvo_port == port_mapping[port].dp) return true; /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ if (p_child->common.dvo_port == port_mapping[port].hdmi && p_child->common.aux_channel != 0) return true; return false; } bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port) { int i; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { const union child_device_config *p_child = &dev_priv->vbt.child_dev[i]; if (child_dev_is_dp_dual_mode(p_child, port)) return true; } return false; } /** * intel_bios_is_dsi_present - is DSI present in VBT * @dev_priv: i915 device instance * @port: port for DSI if present * * Return true if DSI is present, and return the port in %port. */ bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port) { union child_device_config *p_child; u8 dvo_port; int i; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { p_child = dev_priv->vbt.child_dev + i; if (!(p_child->common.device_type & DEVICE_TYPE_MIPI_OUTPUT)) continue; dvo_port = p_child->common.dvo_port; switch (dvo_port) { case DVO_PORT_MIPIA: case DVO_PORT_MIPIC: if (port) *port = dvo_port - DVO_PORT_MIPIA; return true; case DVO_PORT_MIPIB: case DVO_PORT_MIPID: DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n", port_name(dvo_port - DVO_PORT_MIPIA)); break; } } return false; } /** * intel_bios_is_port_hpd_inverted - is HPD inverted for %port * @dev_priv: i915 device instance * @port: port to check * * Return true if HPD should be inverted for %port. */ bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, enum port port) { int i; if (WARN_ON_ONCE(!IS_GEN9_LP(dev_priv))) return false; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { if (!dev_priv->vbt.child_dev[i].common.hpd_invert) continue; switch (dev_priv->vbt.child_dev[i].common.dvo_port) { case DVO_PORT_DPA: case DVO_PORT_HDMIA: if (port == PORT_A) return true; break; case DVO_PORT_DPB: case DVO_PORT_HDMIB: if (port == PORT_B) return true; break; case DVO_PORT_DPC: case DVO_PORT_HDMIC: if (port == PORT_C) return true; break; default: break; } } return false; } /** * intel_bios_is_lspcon_present - if LSPCON is attached on %port * @dev_priv: i915 device instance * @port: port to check * * Return true if LSPCON is present on this port */ bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, enum port port) { int i; if (!HAS_LSPCON(dev_priv)) return false; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { if (!dev_priv->vbt.child_dev[i].common.lspcon) continue; switch (dev_priv->vbt.child_dev[i].common.dvo_port) { case DVO_PORT_DPA: case DVO_PORT_HDMIA: if (port == PORT_A) return true; break; case DVO_PORT_DPB: case DVO_PORT_HDMIB: if (port == PORT_B) return true; break; case DVO_PORT_DPC: case DVO_PORT_HDMIC: if (port == PORT_C) return true; break; case DVO_PORT_DPD: case DVO_PORT_HDMID: if (port == PORT_D) return true; break; default: break; } } return false; }