/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "i915_drv.h" #include "intel_ringbuffer.h" #include "intel_lrc.h" static const struct engine_info { const char *name; unsigned exec_id; enum intel_engine_hw_id hw_id; u32 mmio_base; unsigned irq_shift; int (*init_legacy)(struct intel_engine_cs *engine); int (*init_execlists)(struct intel_engine_cs *engine); } intel_engines[] = { [RCS] = { .name = "render ring", .exec_id = I915_EXEC_RENDER, .hw_id = RCS_HW, .mmio_base = RENDER_RING_BASE, .irq_shift = GEN8_RCS_IRQ_SHIFT, .init_execlists = logical_render_ring_init, .init_legacy = intel_init_render_ring_buffer, }, [BCS] = { .name = "blitter ring", .exec_id = I915_EXEC_BLT, .hw_id = BCS_HW, .mmio_base = BLT_RING_BASE, .irq_shift = GEN8_BCS_IRQ_SHIFT, .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_blt_ring_buffer, }, [VCS] = { .name = "bsd ring", .exec_id = I915_EXEC_BSD, .hw_id = VCS_HW, .mmio_base = GEN6_BSD_RING_BASE, .irq_shift = GEN8_VCS1_IRQ_SHIFT, .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_bsd_ring_buffer, }, [VCS2] = { .name = "bsd2 ring", .exec_id = I915_EXEC_BSD, .hw_id = VCS2_HW, .mmio_base = GEN8_BSD2_RING_BASE, .irq_shift = GEN8_VCS2_IRQ_SHIFT, .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_bsd2_ring_buffer, }, [VECS] = { .name = "video enhancement ring", .exec_id = I915_EXEC_VEBOX, .hw_id = VECS_HW, .mmio_base = VEBOX_RING_BASE, .irq_shift = GEN8_VECS_IRQ_SHIFT, .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_vebox_ring_buffer, }, }; static int intel_engine_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id) { const struct engine_info *info = &intel_engines[id]; struct intel_engine_cs *engine; GEM_BUG_ON(dev_priv->engine[id]); engine = kzalloc(sizeof(*engine), GFP_KERNEL); if (!engine) return -ENOMEM; engine->id = id; engine->i915 = dev_priv; engine->name = info->name; engine->exec_id = info->exec_id; engine->hw_id = engine->guc_id = info->hw_id; engine->mmio_base = info->mmio_base; engine->irq_shift = info->irq_shift; /* Nothing to do here, execute in order of dependencies */ engine->schedule = NULL; ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); dev_priv->engine[id] = engine; return 0; } /** * intel_engines_init() - allocate, populate and init the Engine Command Streamers * @dev_priv: i915 device private * * Return: non-zero if the initialization failed. */ int intel_engines_init(struct drm_i915_private *dev_priv) { struct intel_device_info *device_info = mkwrite_device_info(dev_priv); unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask; unsigned int mask = 0; int (*init)(struct intel_engine_cs *engine); struct intel_engine_cs *engine; enum intel_engine_id id; unsigned int i; int ret; WARN_ON(ring_mask == 0); WARN_ON(ring_mask & GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES)); for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { if (!HAS_ENGINE(dev_priv, i)) continue; if (i915.enable_execlists) init = intel_engines[i].init_execlists; else init = intel_engines[i].init_legacy; if (!init) continue; ret = intel_engine_setup(dev_priv, i); if (ret) goto cleanup; ret = init(dev_priv->engine[i]); if (ret) goto cleanup; mask |= ENGINE_MASK(i); } /* * Catch failures to update intel_engines table when the new engines * are added to the driver by a warning and disabling the forgotten * engines. */ if (WARN_ON(mask != ring_mask)) device_info->ring_mask = mask; device_info->num_rings = hweight32(mask); return 0; cleanup: for_each_engine(engine, dev_priv, id) { if (i915.enable_execlists) intel_logical_ring_cleanup(engine); else intel_engine_cleanup(engine); } return ret; } void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno) { struct drm_i915_private *dev_priv = engine->i915; /* Our semaphore implementation is strictly monotonic (i.e. we proceed * so long as the semaphore value in the register/page is greater * than the sync value), so whenever we reset the seqno, * so long as we reset the tracking semaphore value to 0, it will * always be before the next request's seqno. If we don't reset * the semaphore value, then when the seqno moves backwards all * future waits will complete instantly (causing rendering corruption). */ if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) { I915_WRITE(RING_SYNC_0(engine->mmio_base), 0); I915_WRITE(RING_SYNC_1(engine->mmio_base), 0); if (HAS_VEBOX(dev_priv)) I915_WRITE(RING_SYNC_2(engine->mmio_base), 0); } if (dev_priv->semaphore) { struct page *page = i915_vma_first_page(dev_priv->semaphore); void *semaphores; /* Semaphores are in noncoherent memory, flush to be safe */ semaphores = kmap(page); memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0), 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size); drm_clflush_virt_range(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0), I915_NUM_ENGINES * gen8_semaphore_seqno_size); kunmap(page); } intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno); if (engine->irq_seqno_barrier) engine->irq_seqno_barrier(engine); GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request)); engine->timeline->last_submitted_seqno = seqno; engine->hangcheck.seqno = seqno; /* After manually advancing the seqno, fake the interrupt in case * there are any waiters for that seqno. */ intel_engine_wakeup(engine); } static void intel_engine_init_timeline(struct intel_engine_cs *engine) { engine->timeline = &engine->i915->gt.global_timeline.engine[engine->id]; } /** * intel_engines_setup_common - setup engine state not requiring hw access * @engine: Engine to setup. * * Initializes @engine@ structure members shared between legacy and execlists * submission modes which do not require hardware access. * * Typically done early in the submission mode specific engine setup stage. */ void intel_engine_setup_common(struct intel_engine_cs *engine) { engine->execlist_queue = RB_ROOT; engine->execlist_first = NULL; intel_engine_init_timeline(engine); intel_engine_init_hangcheck(engine); i915_gem_batch_pool_init(engine, &engine->batch_pool); intel_engine_init_cmd_parser(engine); } int intel_engine_create_scratch(struct intel_engine_cs *engine, int size) { struct drm_i915_gem_object *obj; struct i915_vma *vma; int ret; WARN_ON(engine->scratch); obj = i915_gem_object_create_stolen(engine->i915, size); if (!obj) obj = i915_gem_object_create_internal(engine->i915, size); if (IS_ERR(obj)) { DRM_ERROR("Failed to allocate scratch page\n"); return PTR_ERR(obj); } vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_unref; } ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH); if (ret) goto err_unref; engine->scratch = vma; DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n", engine->name, i915_ggtt_offset(vma)); return 0; err_unref: i915_gem_object_put(obj); return ret; } static void intel_engine_cleanup_scratch(struct intel_engine_cs *engine) { i915_vma_unpin_and_release(&engine->scratch); } /** * intel_engines_init_common - initialize cengine state which might require hw access * @engine: Engine to initialize. * * Initializes @engine@ structure members shared between legacy and execlists * submission modes which do require hardware access. * * Typcally done at later stages of submission mode specific engine setup. * * Returns zero on success or an error code on failure. */ int intel_engine_init_common(struct intel_engine_cs *engine) { int ret; /* We may need to do things with the shrinker which * require us to immediately switch back to the default * context. This can cause a problem as pinning the * default context also requires GTT space which may not * be available. To avoid this we always pin the default * context. */ ret = engine->context_pin(engine, engine->i915->kernel_context); if (ret) return ret; ret = intel_engine_init_breadcrumbs(engine); if (ret) goto err_unpin; ret = i915_gem_render_state_init(engine); if (ret) goto err_unpin; return 0; err_unpin: engine->context_unpin(engine, engine->i915->kernel_context); return ret; } /** * intel_engines_cleanup_common - cleans up the engine state created by * the common initiailizers. * @engine: Engine to cleanup. * * This cleans up everything created by the common helpers. */ void intel_engine_cleanup_common(struct intel_engine_cs *engine) { intel_engine_cleanup_scratch(engine); i915_gem_render_state_fini(engine); intel_engine_fini_breadcrumbs(engine); intel_engine_cleanup_cmd_parser(engine); i915_gem_batch_pool_fini(&engine->batch_pool); engine->context_unpin(engine, engine->i915->kernel_context); } u64 intel_engine_get_active_head(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; u64 acthd; if (INTEL_GEN(dev_priv) >= 8) acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base), RING_ACTHD_UDW(engine->mmio_base)); else if (INTEL_GEN(dev_priv) >= 4) acthd = I915_READ(RING_ACTHD(engine->mmio_base)); else acthd = I915_READ(ACTHD); return acthd; } u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; u64 bbaddr; if (INTEL_GEN(dev_priv) >= 8) bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base), RING_BBADDR_UDW(engine->mmio_base)); else bbaddr = I915_READ(RING_BBADDR(engine->mmio_base)); return bbaddr; } const char *i915_cache_level_str(struct drm_i915_private *i915, int type) { switch (type) { case I915_CACHE_NONE: return " uncached"; case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; case I915_CACHE_L3_LLC: return " L3+LLC"; case I915_CACHE_WT: return " WT"; default: return ""; } } static inline uint32_t read_subslice_reg(struct drm_i915_private *dev_priv, int slice, int subslice, i915_reg_t reg) { uint32_t mcr; uint32_t ret; enum forcewake_domains fw_domains; fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ); fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, GEN8_MCR_SELECTOR, FW_REG_READ | FW_REG_WRITE); spin_lock_irq(&dev_priv->uncore.lock); intel_uncore_forcewake_get__locked(dev_priv, fw_domains); mcr = I915_READ_FW(GEN8_MCR_SELECTOR); /* * The HW expects the slice and sublice selectors to be reset to 0 * after reading out the registers. */ WARN_ON_ONCE(mcr & (GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK)); mcr &= ~(GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK); mcr |= GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr); ret = I915_READ_FW(reg); mcr &= ~(GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK); I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr); intel_uncore_forcewake_put__locked(dev_priv, fw_domains); spin_unlock_irq(&dev_priv->uncore.lock); return ret; } /* NB: please notice the memset */ void intel_engine_get_instdone(struct intel_engine_cs *engine, struct intel_instdone *instdone) { struct drm_i915_private *dev_priv = engine->i915; u32 mmio_base = engine->mmio_base; int slice; int subslice; memset(instdone, 0, sizeof(*instdone)); switch (INTEL_GEN(dev_priv)) { default: instdone->instdone = I915_READ(RING_INSTDONE(mmio_base)); if (engine->id != RCS) break; instdone->slice_common = I915_READ(GEN7_SC_INSTDONE); for_each_instdone_slice_subslice(dev_priv, slice, subslice) { instdone->sampler[slice][subslice] = read_subslice_reg(dev_priv, slice, subslice, GEN7_SAMPLER_INSTDONE); instdone->row[slice][subslice] = read_subslice_reg(dev_priv, slice, subslice, GEN7_ROW_INSTDONE); } break; case 7: instdone->instdone = I915_READ(RING_INSTDONE(mmio_base)); if (engine->id != RCS) break; instdone->slice_common = I915_READ(GEN7_SC_INSTDONE); instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE); instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE); break; case 6: case 5: case 4: instdone->instdone = I915_READ(RING_INSTDONE(mmio_base)); if (engine->id == RCS) /* HACK: Using the wrong struct member */ instdone->slice_common = I915_READ(GEN4_INSTDONE1); break; case 3: case 2: instdone->instdone = I915_READ(GEN2_INSTDONE); break; } }