/* * Copyright © 2014-2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include "intel_guc_log.h" #include "i915_drv.h" static void guc_log_capture_logs(struct intel_guc_log *log); /** * DOC: GuC firmware log * * Firmware log is enabled by setting i915.guc_log_level to the positive level. * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from * i915_guc_load_status will print out firmware loading status and scratch * registers value. */ static int guc_action_flush_log_complete(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int guc_action_flush_log(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 0 }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int guc_action_control_log(struct intel_guc *guc, bool enable, bool default_logging, u32 verbosity) { u32 action[] = { INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) | (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) | (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0) }; GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX); return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static inline struct intel_guc *log_to_guc(struct intel_guc_log *log) { return container_of(log, struct intel_guc, log); } static void guc_log_enable_flush_events(struct intel_guc_log *log) { intel_guc_enable_msg(log_to_guc(log), INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); } static void guc_log_disable_flush_events(struct intel_guc_log *log) { intel_guc_disable_msg(log_to_guc(log), INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); } /* * Sub buffer switch callback. Called whenever relay has to switch to a new * sub buffer, relay stays on the same sub buffer if 0 is returned. */ static int subbuf_start_callback(struct rchan_buf *buf, void *subbuf, void *prev_subbuf, size_t prev_padding) { /* * Use no-overwrite mode by default, where relay will stop accepting * new data if there are no empty sub buffers left. * There is no strict synchronization enforced by relay between Consumer * and Producer. In overwrite mode, there is a possibility of getting * inconsistent/garbled data, the producer could be writing on to the * same sub buffer from which Consumer is reading. This can't be avoided * unless Consumer is fast enough and can always run in tandem with * Producer. */ if (relay_buf_full(buf)) return 0; return 1; } /* * file_create() callback. Creates relay file in debugfs. */ static struct dentry *create_buf_file_callback(const char *filename, struct dentry *parent, umode_t mode, struct rchan_buf *buf, int *is_global) { struct dentry *buf_file; /* * This to enable the use of a single buffer for the relay channel and * correspondingly have a single file exposed to User, through which * it can collect the logs in order without any post-processing. * Need to set 'is_global' even if parent is NULL for early logging. */ *is_global = 1; if (!parent) return NULL; buf_file = debugfs_create_file(filename, mode, parent, buf, &relay_file_operations); if (IS_ERR(buf_file)) return NULL; return buf_file; } /* * file_remove() default callback. Removes relay file in debugfs. */ static int remove_buf_file_callback(struct dentry *dentry) { debugfs_remove(dentry); return 0; } /* relay channel callbacks */ static struct rchan_callbacks relay_callbacks = { .subbuf_start = subbuf_start_callback, .create_buf_file = create_buf_file_callback, .remove_buf_file = remove_buf_file_callback, }; static void guc_move_to_next_buf(struct intel_guc_log *log) { /* * Make sure the updates made in the sub buffer are visible when * Consumer sees the following update to offset inside the sub buffer. */ smp_wmb(); /* All data has been written, so now move the offset of sub buffer. */ relay_reserve(log->relay.channel, log->vma->obj->base.size); /* Switch to the next sub buffer */ relay_flush(log->relay.channel); } static void *guc_get_write_buffer(struct intel_guc_log *log) { /* * Just get the base address of a new sub buffer and copy data into it * ourselves. NULL will be returned in no-overwrite mode, if all sub * buffers are full. Could have used the relay_write() to indirectly * copy the data, but that would have been bit convoluted, as we need to * write to only certain locations inside a sub buffer which cannot be * done without using relay_reserve() along with relay_write(). So its * better to use relay_reserve() alone. */ return relay_reserve(log->relay.channel, 0); } static bool guc_check_log_buf_overflow(struct intel_guc_log *log, enum guc_log_buffer_type type, unsigned int full_cnt) { unsigned int prev_full_cnt = log->stats[type].sampled_overflow; bool overflow = false; if (full_cnt != prev_full_cnt) { overflow = true; log->stats[type].overflow = full_cnt; log->stats[type].sampled_overflow += full_cnt - prev_full_cnt; if (full_cnt < prev_full_cnt) { /* buffer_full_cnt is a 4 bit counter */ log->stats[type].sampled_overflow += 16; } dev_notice_ratelimited(guc_to_i915(log_to_guc(log))->drm.dev, "GuC log buffer overflow\n"); } return overflow; } static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type) { switch (type) { case GUC_ISR_LOG_BUFFER: return ISR_BUFFER_SIZE; case GUC_DPC_LOG_BUFFER: return DPC_BUFFER_SIZE; case GUC_CRASH_DUMP_LOG_BUFFER: return CRASH_BUFFER_SIZE; default: MISSING_CASE(type); } return 0; } static void guc_read_update_log_buffer(struct intel_guc_log *log) { unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; struct guc_log_buffer_state log_buf_state_local; enum guc_log_buffer_type type; void *src_data, *dst_data; bool new_overflow; mutex_lock(&log->relay.lock); if (WARN_ON(!intel_guc_log_relay_enabled(log))) goto out_unlock; /* Get the pointer to shared GuC log buffer */ log_buf_state = src_data = log->relay.buf_addr; /* Get the pointer to local buffer to store the logs */ log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); if (unlikely(!log_buf_snapshot_state)) { /* * Used rate limited to avoid deluge of messages, logs might be * getting consumed by User at a slow rate. */ DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n"); log->relay.full_count++; goto out_unlock; } /* Actual logs are present from the 2nd page */ src_data += PAGE_SIZE; dst_data += PAGE_SIZE; for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { /* * Make a copy of the state structure, inside GuC log buffer * (which is uncached mapped), on the stack to avoid reading * from it multiple times. */ memcpy(&log_buf_state_local, log_buf_state, sizeof(struct guc_log_buffer_state)); buffer_size = guc_get_log_buffer_size(type); read_offset = log_buf_state_local.read_ptr; write_offset = log_buf_state_local.sampled_write_ptr; full_cnt = log_buf_state_local.buffer_full_cnt; /* Bookkeeping stuff */ log->stats[type].flush += log_buf_state_local.flush_to_file; new_overflow = guc_check_log_buf_overflow(log, type, full_cnt); /* Update the state of shared log buffer */ log_buf_state->read_ptr = write_offset; log_buf_state->flush_to_file = 0; log_buf_state++; /* First copy the state structure in snapshot buffer */ memcpy(log_buf_snapshot_state, &log_buf_state_local, sizeof(struct guc_log_buffer_state)); /* * The write pointer could have been updated by GuC firmware, * after sending the flush interrupt to Host, for consistency * set write pointer value to same value of sampled_write_ptr * in the snapshot buffer. */ log_buf_snapshot_state->write_ptr = write_offset; log_buf_snapshot_state++; /* Now copy the actual logs. */ if (unlikely(new_overflow)) { /* copy the whole buffer in case of overflow */ read_offset = 0; write_offset = buffer_size; } else if (unlikely((read_offset > buffer_size) || (write_offset > buffer_size))) { DRM_ERROR("invalid log buffer state\n"); /* copy whole buffer as offsets are unreliable */ read_offset = 0; write_offset = buffer_size; } /* Just copy the newly written data */ if (read_offset > write_offset) { i915_memcpy_from_wc(dst_data, src_data, write_offset); bytes_to_copy = buffer_size - read_offset; } else { bytes_to_copy = write_offset - read_offset; } i915_memcpy_from_wc(dst_data + read_offset, src_data + read_offset, bytes_to_copy); src_data += buffer_size; dst_data += buffer_size; } guc_move_to_next_buf(log); out_unlock: mutex_unlock(&log->relay.lock); } static void capture_logs_work(struct work_struct *work) { struct intel_guc_log *log = container_of(work, struct intel_guc_log, relay.flush_work); guc_log_capture_logs(log); } static int guc_log_map(struct intel_guc_log *log) { void *vaddr; lockdep_assert_held(&log->relay.lock); if (!log->vma) return -ENODEV; /* * Create a WC (Uncached for read) vmalloc mapping of log * buffer pages, so that we can directly get the data * (up-to-date) from memory. */ vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); log->relay.buf_addr = vaddr; return 0; } static void guc_log_unmap(struct intel_guc_log *log) { lockdep_assert_held(&log->relay.lock); i915_gem_object_unpin_map(log->vma->obj); log->relay.buf_addr = NULL; } void intel_guc_log_init_early(struct intel_guc_log *log) { mutex_init(&log->relay.lock); INIT_WORK(&log->relay.flush_work, capture_logs_work); } static int guc_log_relay_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); struct rchan *guc_log_relay_chan; size_t n_subbufs, subbuf_size; int ret; lockdep_assert_held(&log->relay.lock); /* Keep the size of sub buffers same as shared log buffer */ subbuf_size = log->vma->size; /* * Store up to 8 snapshots, which is large enough to buffer sufficient * boot time logs and provides enough leeway to User, in terms of * latency, for consuming the logs from relay. Also doesn't take * up too much memory. */ n_subbufs = 8; guc_log_relay_chan = relay_open("guc_log", dev_priv->drm.primary->debugfs_root, subbuf_size, n_subbufs, &relay_callbacks, dev_priv); if (!guc_log_relay_chan) { DRM_ERROR("Couldn't create relay chan for GuC logging\n"); ret = -ENOMEM; return ret; } GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); log->relay.channel = guc_log_relay_chan; return 0; } static void guc_log_relay_destroy(struct intel_guc_log *log) { lockdep_assert_held(&log->relay.lock); relay_close(log->relay.channel); log->relay.channel = NULL; } static void guc_log_capture_logs(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); intel_wakeref_t wakeref; guc_read_update_log_buffer(log); /* * Generally device is expected to be active only at this * time, so get/put should be really quick. */ with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) guc_action_flush_log_complete(guc); } int intel_guc_log_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct i915_vma *vma; u32 guc_log_size; int ret; GEM_BUG_ON(log->vma); /* * GuC Log buffer Layout * * +===============================+ 00B * | Crash dump state header | * +-------------------------------+ 32B * | DPC state header | * +-------------------------------+ 64B * | ISR state header | * +-------------------------------+ 96B * | | * +===============================+ PAGE_SIZE (4KB) * | Crash Dump logs | * +===============================+ + CRASH_SIZE * | DPC logs | * +===============================+ + DPC_SIZE * | ISR logs | * +===============================+ + ISR_SIZE */ guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE + ISR_BUFFER_SIZE; vma = intel_guc_allocate_vma(guc, guc_log_size); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } log->vma = vma; log->level = i915_modparams.guc_log_level; return 0; err: DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret); return ret; } void intel_guc_log_destroy(struct intel_guc_log *log) { i915_vma_unpin_and_release(&log->vma, 0); } int intel_guc_log_set_level(struct intel_guc_log *log, u32 level) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); intel_wakeref_t wakeref; int ret = 0; BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); GEM_BUG_ON(!log->vma); /* * GuC is recognizing log levels starting from 0 to max, we're using 0 * as indication that logging should be disabled. */ if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX) return -EINVAL; mutex_lock(&dev_priv->drm.struct_mutex); if (log->level == level) goto out_unlock; with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) ret = guc_action_control_log(guc, GUC_LOG_LEVEL_IS_VERBOSE(level), GUC_LOG_LEVEL_IS_ENABLED(level), GUC_LOG_LEVEL_TO_VERBOSITY(level)); if (ret) { DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret); goto out_unlock; } log->level = level; out_unlock: mutex_unlock(&dev_priv->drm.struct_mutex); return ret; } bool intel_guc_log_relay_enabled(const struct intel_guc_log *log) { return log->relay.buf_addr; } int intel_guc_log_relay_open(struct intel_guc_log *log) { int ret; mutex_lock(&log->relay.lock); if (intel_guc_log_relay_enabled(log)) { ret = -EEXIST; goto out_unlock; } /* * We require SSE 4.1 for fast reads from the GuC log buffer and * it should be present on the chipsets supporting GuC based * submisssions. */ if (!i915_has_memcpy_from_wc()) { ret = -ENXIO; goto out_unlock; } ret = guc_log_relay_create(log); if (ret) goto out_unlock; ret = guc_log_map(log); if (ret) goto out_relay; mutex_unlock(&log->relay.lock); guc_log_enable_flush_events(log); /* * When GuC is logging without us relaying to userspace, we're ignoring * the flush notification. This means that we need to unconditionally * flush on relay enabling, since GuC only notifies us once. */ queue_work(log->relay.flush_wq, &log->relay.flush_work); return 0; out_relay: guc_log_relay_destroy(log); out_unlock: mutex_unlock(&log->relay.lock); return ret; } void intel_guc_log_relay_flush(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_i915(guc); intel_wakeref_t wakeref; /* * Before initiating the forceful flush, wait for any pending/ongoing * flush to complete otherwise forceful flush may not actually happen. */ flush_work(&log->relay.flush_work); with_intel_runtime_pm(&i915->runtime_pm, wakeref) guc_action_flush_log(guc); /* GuC would have updated log buffer by now, so capture it */ guc_log_capture_logs(log); } void intel_guc_log_relay_close(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_i915(guc); guc_log_disable_flush_events(log); synchronize_irq(i915->drm.irq); flush_work(&log->relay.flush_work); mutex_lock(&log->relay.lock); GEM_BUG_ON(!intel_guc_log_relay_enabled(log)); guc_log_unmap(log); guc_log_relay_destroy(log); mutex_unlock(&log->relay.lock); } void intel_guc_log_handle_flush_event(struct intel_guc_log *log) { queue_work(log->relay.flush_wq, &log->relay.flush_work); }