// SPDX-License-Identifier: MIT /* * Copyright(c) 2020 Intel Corporation. */ #include #include "intel_pxp.h" #include "intel_pxp_irq.h" #include "intel_pxp_session.h" #include "intel_pxp_tee.h" #include "gem/i915_gem_context.h" #include "gt/intel_context.h" #include "i915_drv.h" /** * DOC: PXP * * PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms. * It allows execution and flip to display of protected (i.e. encrypted) * objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig. * * Objects can opt-in to PXP encryption at creation time via the * I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be * correctly protected they must be used in conjunction with a context created * with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation * of those two uapi flags for details and restrictions. * * Protected objects are tied to a pxp session; currently we only support one * session, which i915 manages and whose index is available in the uapi * (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting * protected objects. * The session is invalidated by the HW when certain events occur (e.g. * suspend/resume). When this happens, all the objects that were used with the * session are marked as invalid and all contexts marked as using protected * content are banned. Any further attempt at using them in an execbuf call is * rejected, while flips are converted to black frames. * * Some of the PXP setup operations are performed by the Management Engine, * which is handled by the mei driver; communication between i915 and mei is * performed via the mei_pxp component module. */ struct intel_gt *pxp_to_gt(const struct intel_pxp *pxp) { return container_of(pxp, struct intel_gt, pxp); } bool intel_pxp_is_enabled(const struct intel_pxp *pxp) { return pxp->ce; } bool intel_pxp_is_active(const struct intel_pxp *pxp) { return pxp->arb_is_valid; } /* KCR register definitions */ #define KCR_INIT _MMIO(0x320f0) /* Setting KCR Init bit is required after system boot */ #define KCR_INIT_ALLOW_DISPLAY_ME_WRITES REG_BIT(14) static void kcr_pxp_enable(struct intel_gt *gt) { intel_uncore_write(gt->uncore, KCR_INIT, _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES)); } static void kcr_pxp_disable(struct intel_gt *gt) { intel_uncore_write(gt->uncore, KCR_INIT, _MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES)); } static int create_vcs_context(struct intel_pxp *pxp) { static struct lock_class_key pxp_lock; struct intel_gt *gt = pxp_to_gt(pxp); struct intel_engine_cs *engine; struct intel_context *ce; int i; /* * Find the first VCS engine present. We're guaranteed there is one * if we're in this function due to the check in has_pxp */ for (i = 0, engine = NULL; !engine; i++) engine = gt->engine_class[VIDEO_DECODE_CLASS][i]; GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS); ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, I915_GEM_HWS_PXP_ADDR, &pxp_lock, "pxp_context"); if (IS_ERR(ce)) { drm_err(>->i915->drm, "failed to create VCS ctx for PXP\n"); return PTR_ERR(ce); } pxp->ce = ce; return 0; } static void destroy_vcs_context(struct intel_pxp *pxp) { intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce)); } void intel_pxp_init(struct intel_pxp *pxp) { struct intel_gt *gt = pxp_to_gt(pxp); int ret; if (!HAS_PXP(gt->i915)) return; mutex_init(&pxp->tee_mutex); /* * we'll use the completion to check if there is a termination pending, * so we start it as completed and we reinit it when a termination * is triggered. */ init_completion(&pxp->termination); complete_all(&pxp->termination); mutex_init(&pxp->arb_mutex); INIT_WORK(&pxp->session_work, intel_pxp_session_work); ret = create_vcs_context(pxp); if (ret) return; ret = intel_pxp_tee_component_init(pxp); if (ret) goto out_context; drm_info(>->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n"); return; out_context: destroy_vcs_context(pxp); } void intel_pxp_fini(struct intel_pxp *pxp) { if (!intel_pxp_is_enabled(pxp)) return; pxp->arb_is_valid = false; intel_pxp_tee_component_fini(pxp); destroy_vcs_context(pxp); } void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp) { pxp->arb_is_valid = false; reinit_completion(&pxp->termination); } static void pxp_queue_termination(struct intel_pxp *pxp) { struct intel_gt *gt = pxp_to_gt(pxp); /* * We want to get the same effect as if we received a termination * interrupt, so just pretend that we did. */ spin_lock_irq(gt->irq_lock); intel_pxp_mark_termination_in_progress(pxp); pxp->session_events |= PXP_TERMINATION_REQUEST; queue_work(system_unbound_wq, &pxp->session_work); spin_unlock_irq(gt->irq_lock); } static bool pxp_component_bound(struct intel_pxp *pxp) { bool bound = false; mutex_lock(&pxp->tee_mutex); if (pxp->pxp_component) bound = true; mutex_unlock(&pxp->tee_mutex); return bound; } /* * the arb session is restarted from the irq work when we receive the * termination completion interrupt */ int intel_pxp_start(struct intel_pxp *pxp) { int ret = 0; if (!intel_pxp_is_enabled(pxp)) return -ENODEV; if (wait_for(pxp_component_bound(pxp), 250)) return -ENXIO; mutex_lock(&pxp->arb_mutex); if (pxp->arb_is_valid) goto unlock; pxp_queue_termination(pxp); if (!wait_for_completion_timeout(&pxp->termination, msecs_to_jiffies(250))) { ret = -ETIMEDOUT; goto unlock; } /* make sure the compiler doesn't optimize the double access */ barrier(); if (!pxp->arb_is_valid) ret = -EIO; unlock: mutex_unlock(&pxp->arb_mutex); return ret; } void intel_pxp_init_hw(struct intel_pxp *pxp) { kcr_pxp_enable(pxp_to_gt(pxp)); intel_pxp_irq_enable(pxp); } void intel_pxp_fini_hw(struct intel_pxp *pxp) { kcr_pxp_disable(pxp_to_gt(pxp)); intel_pxp_irq_disable(pxp); } int intel_pxp_key_check(struct intel_pxp *pxp, struct drm_i915_gem_object *obj, bool assign) { if (!intel_pxp_is_active(pxp)) return -ENODEV; if (!i915_gem_object_is_protected(obj)) return -EINVAL; GEM_BUG_ON(!pxp->key_instance); /* * If this is the first time we're using this object, it's not * encrypted yet; it will be encrypted with the current key, so mark it * as such. If the object is already encrypted, check instead if the * used key is still valid. */ if (!obj->pxp_key_instance && assign) obj->pxp_key_instance = pxp->key_instance; if (obj->pxp_key_instance != pxp->key_instance) return -ENOEXEC; return 0; } void intel_pxp_invalidate(struct intel_pxp *pxp) { struct drm_i915_private *i915 = pxp_to_gt(pxp)->i915; struct i915_gem_context *ctx, *cn; /* ban all contexts marked as protected */ spin_lock_irq(&i915->gem.contexts.lock); list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { struct i915_gem_engines_iter it; struct intel_context *ce; if (!kref_get_unless_zero(&ctx->ref)) continue; if (likely(!i915_gem_context_uses_protected_content(ctx))) { i915_gem_context_put(ctx); continue; } spin_unlock_irq(&i915->gem.contexts.lock); /* * By the time we get here we are either going to suspend with * quiesced execution or the HW keys are already long gone and * in this case it is worthless to attempt to close the context * and wait for its execution. It will hang the GPU if it has * not already. So, as a fast mitigation, we can ban the * context as quick as we can. That might race with the * execbuffer, but currently this is the best that can be done. */ for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) intel_context_ban(ce, NULL); i915_gem_context_unlock_engines(ctx); /* * The context has been banned, no need to keep the wakeref. * This is safe from races because the only other place this * is touched is context_release and we're holding a ctx ref */ if (ctx->pxp_wakeref) { intel_runtime_pm_put(&i915->runtime_pm, ctx->pxp_wakeref); ctx->pxp_wakeref = 0; } spin_lock_irq(&i915->gem.contexts.lock); list_safe_reset_next(ctx, cn, link); i915_gem_context_put(ctx); } spin_unlock_irq(&i915->gem.contexts.lock); }