/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "../i915_selftest.h" #include #include "mock_drm.h" #include "i915_random.h" static const unsigned int page_sizes[] = { I915_GTT_PAGE_SIZE_2M, I915_GTT_PAGE_SIZE_64K, I915_GTT_PAGE_SIZE_4K, }; static unsigned int get_largest_page_size(struct drm_i915_private *i915, u64 rem) { int i; for (i = 0; i < ARRAY_SIZE(page_sizes); ++i) { unsigned int page_size = page_sizes[i]; if (HAS_PAGE_SIZES(i915, page_size) && rem >= page_size) return page_size; } return 0; } static void huge_pages_free_pages(struct sg_table *st) { struct scatterlist *sg; for (sg = st->sgl; sg; sg = __sg_next(sg)) { if (sg_page(sg)) __free_pages(sg_page(sg), get_order(sg->length)); } sg_free_table(st); kfree(st); } static int get_huge_pages(struct drm_i915_gem_object *obj) { #define GFP (GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY) unsigned int page_mask = obj->mm.page_mask; struct sg_table *st; struct scatterlist *sg; unsigned int sg_page_sizes; u64 rem; st = kmalloc(sizeof(*st), GFP); if (!st) return -ENOMEM; if (sg_alloc_table(st, obj->base.size >> PAGE_SHIFT, GFP)) { kfree(st); return -ENOMEM; } rem = obj->base.size; sg = st->sgl; st->nents = 0; sg_page_sizes = 0; /* * Our goal here is simple, we want to greedily fill the object from * largest to smallest page-size, while ensuring that we use *every* * page-size as per the given page-mask. */ do { unsigned int bit = ilog2(page_mask); unsigned int page_size = BIT(bit); int order = get_order(page_size); do { struct page *page; GEM_BUG_ON(order >= MAX_ORDER); page = alloc_pages(GFP | __GFP_ZERO, order); if (!page) goto err; sg_set_page(sg, page, page_size, 0); sg_page_sizes |= page_size; st->nents++; rem -= page_size; if (!rem) { sg_mark_end(sg); break; } sg = __sg_next(sg); } while ((rem - ((page_size-1) & page_mask)) >= page_size); page_mask &= (page_size-1); } while (page_mask); if (i915_gem_gtt_prepare_pages(obj, st)) goto err; obj->mm.madv = I915_MADV_DONTNEED; GEM_BUG_ON(sg_page_sizes != obj->mm.page_mask); __i915_gem_object_set_pages(obj, st, sg_page_sizes); return 0; err: sg_set_page(sg, NULL, 0, 0); sg_mark_end(sg); huge_pages_free_pages(st); return -ENOMEM; } static void put_huge_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { i915_gem_gtt_finish_pages(obj, pages); huge_pages_free_pages(pages); obj->mm.dirty = false; obj->mm.madv = I915_MADV_WILLNEED; } static const struct drm_i915_gem_object_ops huge_page_ops = { .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = get_huge_pages, .put_pages = put_huge_pages, }; static struct drm_i915_gem_object * huge_pages_object(struct drm_i915_private *i915, u64 size, unsigned int page_mask) { struct drm_i915_gem_object *obj; GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, BIT(__ffs(page_mask)))); if (size >> PAGE_SHIFT > INT_MAX) return ERR_PTR(-E2BIG); if (overflows_type(size, obj->base.size)) return ERR_PTR(-E2BIG); obj = i915_gem_object_alloc(i915); if (!obj) return ERR_PTR(-ENOMEM); drm_gem_private_object_init(&i915->drm, &obj->base, size); i915_gem_object_init(obj, &huge_page_ops); obj->write_domain = I915_GEM_DOMAIN_CPU; obj->read_domains = I915_GEM_DOMAIN_CPU; obj->cache_level = I915_CACHE_NONE; obj->mm.page_mask = page_mask; return obj; } static int fake_get_huge_pages(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); const u64 max_len = rounddown_pow_of_two(UINT_MAX); struct sg_table *st; struct scatterlist *sg; unsigned int sg_page_sizes; u64 rem; st = kmalloc(sizeof(*st), GFP); if (!st) return -ENOMEM; if (sg_alloc_table(st, obj->base.size >> PAGE_SHIFT, GFP)) { kfree(st); return -ENOMEM; } /* Use optimal page sized chunks to fill in the sg table */ rem = obj->base.size; sg = st->sgl; st->nents = 0; sg_page_sizes = 0; do { unsigned int page_size = get_largest_page_size(i915, rem); unsigned int len = min(page_size * div_u64(rem, page_size), max_len); GEM_BUG_ON(!page_size); sg->offset = 0; sg->length = len; sg_dma_len(sg) = len; sg_dma_address(sg) = page_size; sg_page_sizes |= len; st->nents++; rem -= len; if (!rem) { sg_mark_end(sg); break; } sg = sg_next(sg); } while (1); i915_sg_trim(st); obj->mm.madv = I915_MADV_DONTNEED; __i915_gem_object_set_pages(obj, st, sg_page_sizes); return 0; } static int fake_get_huge_pages_single(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct sg_table *st; struct scatterlist *sg; unsigned int page_size; st = kmalloc(sizeof(*st), GFP); if (!st) return -ENOMEM; if (sg_alloc_table(st, 1, GFP)) { kfree(st); return -ENOMEM; } sg = st->sgl; st->nents = 1; page_size = get_largest_page_size(i915, obj->base.size); GEM_BUG_ON(!page_size); sg->offset = 0; sg->length = obj->base.size; sg_dma_len(sg) = obj->base.size; sg_dma_address(sg) = page_size; obj->mm.madv = I915_MADV_DONTNEED; __i915_gem_object_set_pages(obj, st, sg->length); return 0; #undef GFP } static void fake_free_huge_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { sg_free_table(pages); kfree(pages); } static void fake_put_huge_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { fake_free_huge_pages(obj, pages); obj->mm.dirty = false; obj->mm.madv = I915_MADV_WILLNEED; } static const struct drm_i915_gem_object_ops fake_ops = { .flags = I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = fake_get_huge_pages, .put_pages = fake_put_huge_pages, }; static const struct drm_i915_gem_object_ops fake_ops_single = { .flags = I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = fake_get_huge_pages_single, .put_pages = fake_put_huge_pages, }; static struct drm_i915_gem_object * fake_huge_pages_object(struct drm_i915_private *i915, u64 size, bool single) { struct drm_i915_gem_object *obj; GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); if (size >> PAGE_SHIFT > UINT_MAX) return ERR_PTR(-E2BIG); if (overflows_type(size, obj->base.size)) return ERR_PTR(-E2BIG); obj = i915_gem_object_alloc(i915); if (!obj) return ERR_PTR(-ENOMEM); drm_gem_private_object_init(&i915->drm, &obj->base, size); if (single) i915_gem_object_init(obj, &fake_ops_single); else i915_gem_object_init(obj, &fake_ops); obj->write_domain = I915_GEM_DOMAIN_CPU; obj->read_domains = I915_GEM_DOMAIN_CPU; obj->cache_level = I915_CACHE_NONE; return obj; } static int igt_check_page_sizes(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; unsigned int supported = INTEL_INFO(i915)->page_sizes; struct drm_i915_gem_object *obj = vma->obj; int err = 0; if (!HAS_PAGE_SIZES(i915, vma->page_sizes.sg)) { pr_err("unsupported page_sizes.sg=%u, supported=%u\n", vma->page_sizes.sg & ~supported, supported); err = -EINVAL; } if (!HAS_PAGE_SIZES(i915, vma->page_sizes.gtt)) { pr_err("unsupported page_sizes.gtt=%u, supported=%u\n", vma->page_sizes.gtt & ~supported, supported); err = -EINVAL; } if (vma->page_sizes.phys != obj->mm.page_sizes.phys) { pr_err("vma->page_sizes.phys(%u) != obj->mm.page_sizes.phys(%u)\n", vma->page_sizes.phys, obj->mm.page_sizes.phys); err = -EINVAL; } if (vma->page_sizes.sg != obj->mm.page_sizes.sg) { pr_err("vma->page_sizes.sg(%u) != obj->mm.page_sizes.sg(%u)\n", vma->page_sizes.sg, obj->mm.page_sizes.sg); err = -EINVAL; } if (obj->mm.page_sizes.gtt) { pr_err("obj->page_sizes.gtt(%u) should never be set\n", obj->mm.page_sizes.gtt); err = -EINVAL; } return err; } static int igt_mock_exhaust_device_supported_pages(void *arg) { struct i915_hw_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; unsigned int saved_mask = INTEL_INFO(i915)->page_sizes; struct drm_i915_gem_object *obj; struct i915_vma *vma; int i, j, single; int err; /* * Sanity check creating objects with every valid page support * combination for our mock device. */ for (i = 1; i < BIT(ARRAY_SIZE(page_sizes)); i++) { unsigned int combination = 0; for (j = 0; j < ARRAY_SIZE(page_sizes); j++) { if (i & BIT(j)) combination |= page_sizes[j]; } mkwrite_device_info(i915)->page_sizes = combination; for (single = 0; single <= 1; ++single) { obj = fake_huge_pages_object(i915, combination, !!single); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out_device; } if (obj->base.size != combination) { pr_err("obj->base.size=%zu, expected=%u\n", obj->base.size, combination); err = -EINVAL; goto out_put; } vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out_close; err = igt_check_page_sizes(vma); if (vma->page_sizes.sg != combination) { pr_err("page_sizes.sg=%u, expected=%u\n", vma->page_sizes.sg, combination); err = -EINVAL; } i915_vma_unpin(vma); i915_vma_close(vma); i915_gem_object_put(obj); if (err) goto out_device; } } goto out_device; out_close: i915_vma_close(vma); out_put: i915_gem_object_put(obj); out_device: mkwrite_device_info(i915)->page_sizes = saved_mask; return err; } static int igt_mock_ppgtt_misaligned_dma(void *arg) { struct i915_hw_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; unsigned long supported = INTEL_INFO(i915)->page_sizes; struct drm_i915_gem_object *obj; int bit; int err; /* * Sanity check dma misalignment for huge pages -- the dma addresses we * insert into the paging structures need to always respect the page * size alignment. */ bit = ilog2(I915_GTT_PAGE_SIZE_64K); for_each_set_bit_from(bit, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { IGT_TIMEOUT(end_time); unsigned int page_size = BIT(bit); unsigned int flags = PIN_USER | PIN_OFFSET_FIXED; unsigned int offset; unsigned int size = round_up(page_size, I915_GTT_PAGE_SIZE_2M) << 1; struct i915_vma *vma; obj = fake_huge_pages_object(i915, size, true); if (IS_ERR(obj)) return PTR_ERR(obj); if (obj->base.size != size) { pr_err("obj->base.size=%zu, expected=%u\n", obj->base.size, size); err = -EINVAL; goto out_put; } err = i915_gem_object_pin_pages(obj); if (err) goto out_put; /* Force the page size for this object */ obj->mm.page_sizes.sg = page_size; vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_unpin; } err = i915_vma_pin(vma, 0, 0, flags); if (err) { i915_vma_close(vma); goto out_unpin; } err = igt_check_page_sizes(vma); if (vma->page_sizes.gtt != page_size) { pr_err("page_sizes.gtt=%u, expected %u\n", vma->page_sizes.gtt, page_size); err = -EINVAL; } i915_vma_unpin(vma); if (err) { i915_vma_close(vma); goto out_unpin; } /* * Try all the other valid offsets until the next * boundary -- should always fall back to using 4K * pages. */ for (offset = 4096; offset < page_size; offset += 4096) { err = i915_vma_unbind(vma); if (err) { i915_vma_close(vma); goto out_unpin; } err = i915_vma_pin(vma, 0, 0, flags | offset); if (err) { i915_vma_close(vma); goto out_unpin; } err = igt_check_page_sizes(vma); if (vma->page_sizes.gtt != I915_GTT_PAGE_SIZE_4K) { pr_err("page_sizes.gtt=%u, expected %llu\n", vma->page_sizes.gtt, I915_GTT_PAGE_SIZE_4K); err = -EINVAL; } i915_vma_unpin(vma); if (err) { i915_vma_close(vma); goto out_unpin; } if (igt_timeout(end_time, "%s timed out at offset %x with page-size %x\n", __func__, offset, page_size)) break; } i915_vma_close(vma); i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj, I915_MM_NORMAL); i915_gem_object_put(obj); } return 0; out_unpin: i915_gem_object_unpin_pages(obj); out_put: i915_gem_object_put(obj); return err; } static void close_object_list(struct list_head *objects, struct i915_hw_ppgtt *ppgtt) { struct drm_i915_gem_object *obj, *on; list_for_each_entry_safe(obj, on, objects, st_link) { struct i915_vma *vma; vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (!IS_ERR(vma)) i915_vma_close(vma); list_del(&obj->st_link); i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj, I915_MM_NORMAL); i915_gem_object_put(obj); } } static int igt_mock_ppgtt_huge_fill(void *arg) { struct i915_hw_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; unsigned long max_pages = ppgtt->vm.total >> PAGE_SHIFT; unsigned long page_num; bool single = false; LIST_HEAD(objects); IGT_TIMEOUT(end_time); int err = -ENODEV; for_each_prime_number_from(page_num, 1, max_pages) { struct drm_i915_gem_object *obj; u64 size = page_num << PAGE_SHIFT; struct i915_vma *vma; unsigned int expected_gtt = 0; int i; obj = fake_huge_pages_object(i915, size, single); if (IS_ERR(obj)) { err = PTR_ERR(obj); break; } if (obj->base.size != size) { pr_err("obj->base.size=%zd, expected=%llu\n", obj->base.size, size); i915_gem_object_put(obj); err = -EINVAL; break; } err = i915_gem_object_pin_pages(obj); if (err) { i915_gem_object_put(obj); break; } list_add(&obj->st_link, &objects); vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); break; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) break; err = igt_check_page_sizes(vma); if (err) { i915_vma_unpin(vma); break; } /* * Figure out the expected gtt page size knowing that we go from * largest to smallest page size sg chunks, and that we align to * the largest page size. */ for (i = 0; i < ARRAY_SIZE(page_sizes); ++i) { unsigned int page_size = page_sizes[i]; if (HAS_PAGE_SIZES(i915, page_size) && size >= page_size) { expected_gtt |= page_size; size &= page_size-1; } } GEM_BUG_ON(!expected_gtt); GEM_BUG_ON(size); if (expected_gtt & I915_GTT_PAGE_SIZE_4K) expected_gtt &= ~I915_GTT_PAGE_SIZE_64K; i915_vma_unpin(vma); if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) { if (!IS_ALIGNED(vma->node.start, I915_GTT_PAGE_SIZE_2M)) { pr_err("node.start(%llx) not aligned to 2M\n", vma->node.start); err = -EINVAL; break; } if (!IS_ALIGNED(vma->node.size, I915_GTT_PAGE_SIZE_2M)) { pr_err("node.size(%llx) not aligned to 2M\n", vma->node.size); err = -EINVAL; break; } } if (vma->page_sizes.gtt != expected_gtt) { pr_err("gtt=%u, expected=%u, size=%zd, single=%s\n", vma->page_sizes.gtt, expected_gtt, obj->base.size, yesno(!!single)); err = -EINVAL; break; } if (igt_timeout(end_time, "%s timed out at size %zd\n", __func__, obj->base.size)) break; single = !single; } close_object_list(&objects, ppgtt); if (err == -ENOMEM || err == -ENOSPC) err = 0; return err; } static int igt_mock_ppgtt_64K(void *arg) { struct i915_hw_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; struct drm_i915_gem_object *obj; const struct object_info { unsigned int size; unsigned int gtt; unsigned int offset; } objects[] = { /* Cases with forced padding/alignment */ { .size = SZ_64K, .gtt = I915_GTT_PAGE_SIZE_64K, .offset = 0, }, { .size = SZ_64K + SZ_4K, .gtt = I915_GTT_PAGE_SIZE_4K, .offset = 0, }, { .size = SZ_64K - SZ_4K, .gtt = I915_GTT_PAGE_SIZE_4K, .offset = 0, }, { .size = SZ_2M, .gtt = I915_GTT_PAGE_SIZE_64K, .offset = 0, }, { .size = SZ_2M - SZ_4K, .gtt = I915_GTT_PAGE_SIZE_4K, .offset = 0, }, { .size = SZ_2M + SZ_4K, .gtt = I915_GTT_PAGE_SIZE_64K | I915_GTT_PAGE_SIZE_4K, .offset = 0, }, { .size = SZ_2M + SZ_64K, .gtt = I915_GTT_PAGE_SIZE_64K, .offset = 0, }, { .size = SZ_2M - SZ_64K, .gtt = I915_GTT_PAGE_SIZE_64K, .offset = 0, }, /* Try without any forced padding/alignment */ { .size = SZ_64K, .offset = SZ_2M, .gtt = I915_GTT_PAGE_SIZE_4K, }, { .size = SZ_128K, .offset = SZ_2M - SZ_64K, .gtt = I915_GTT_PAGE_SIZE_4K, }, }; struct i915_vma *vma; int i, single; int err; /* * Sanity check some of the trickiness with 64K pages -- either we can * safely mark the whole page-table(2M block) as 64K, or we have to * always fallback to 4K. */ if (!HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K)) return 0; for (i = 0; i < ARRAY_SIZE(objects); ++i) { unsigned int size = objects[i].size; unsigned int expected_gtt = objects[i].gtt; unsigned int offset = objects[i].offset; unsigned int flags = PIN_USER; for (single = 0; single <= 1; single++) { obj = fake_huge_pages_object(i915, size, !!single); if (IS_ERR(obj)) return PTR_ERR(obj); err = i915_gem_object_pin_pages(obj); if (err) goto out_object_put; /* * Disable 2M pages -- We only want to use 64K/4K pages * for this test. */ obj->mm.page_sizes.sg &= ~I915_GTT_PAGE_SIZE_2M; vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_object_unpin; } if (offset) flags |= PIN_OFFSET_FIXED | offset; err = i915_vma_pin(vma, 0, 0, flags); if (err) goto out_vma_close; err = igt_check_page_sizes(vma); if (err) goto out_vma_unpin; if (!offset && vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) { if (!IS_ALIGNED(vma->node.start, I915_GTT_PAGE_SIZE_2M)) { pr_err("node.start(%llx) not aligned to 2M\n", vma->node.start); err = -EINVAL; goto out_vma_unpin; } if (!IS_ALIGNED(vma->node.size, I915_GTT_PAGE_SIZE_2M)) { pr_err("node.size(%llx) not aligned to 2M\n", vma->node.size); err = -EINVAL; goto out_vma_unpin; } } if (vma->page_sizes.gtt != expected_gtt) { pr_err("gtt=%u, expected=%u, i=%d, single=%s\n", vma->page_sizes.gtt, expected_gtt, i, yesno(!!single)); err = -EINVAL; goto out_vma_unpin; } i915_vma_unpin(vma); i915_vma_close(vma); i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj, I915_MM_NORMAL); i915_gem_object_put(obj); } } return 0; out_vma_unpin: i915_vma_unpin(vma); out_vma_close: i915_vma_close(vma); out_object_unpin: i915_gem_object_unpin_pages(obj); out_object_put: i915_gem_object_put(obj); return err; } static struct i915_vma * gpu_write_dw(struct i915_vma *vma, u64 offset, u32 val) { struct drm_i915_private *i915 = vma->vm->i915; const int gen = INTEL_GEN(i915); unsigned int count = vma->size >> PAGE_SHIFT; struct drm_i915_gem_object *obj; struct i915_vma *batch; unsigned int size; u32 *cmd; int n; int err; size = (1 + 4 * count) * sizeof(u32); size = round_up(size, PAGE_SIZE); obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) return ERR_CAST(obj); err = i915_gem_object_set_to_wc_domain(obj, true); if (err) goto err; cmd = i915_gem_object_pin_map(obj, I915_MAP_WC); if (IS_ERR(cmd)) { err = PTR_ERR(cmd); goto err; } offset += vma->node.start; for (n = 0; n < count; n++) { if (gen >= 8) { *cmd++ = MI_STORE_DWORD_IMM_GEN4; *cmd++ = lower_32_bits(offset); *cmd++ = upper_32_bits(offset); *cmd++ = val; } else if (gen >= 4) { *cmd++ = MI_STORE_DWORD_IMM_GEN4 | (gen < 6 ? MI_USE_GGTT : 0); *cmd++ = 0; *cmd++ = offset; *cmd++ = val; } else { *cmd++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; *cmd++ = offset; *cmd++ = val; } offset += PAGE_SIZE; } *cmd = MI_BATCH_BUFFER_END; i915_gem_chipset_flush(i915); i915_gem_object_unpin_map(obj); batch = i915_vma_instance(obj, vma->vm, NULL); if (IS_ERR(batch)) { err = PTR_ERR(batch); goto err; } err = i915_vma_pin(batch, 0, 0, PIN_USER); if (err) goto err; return batch; err: i915_gem_object_put(obj); return ERR_PTR(err); } static int gpu_write(struct i915_vma *vma, struct i915_gem_context *ctx, struct intel_engine_cs *engine, u32 dword, u32 value) { struct i915_request *rq; struct i915_vma *batch; int err; GEM_BUG_ON(!intel_engine_can_store_dword(engine)); err = i915_gem_object_set_to_gtt_domain(vma->obj, true); if (err) return err; batch = gpu_write_dw(vma, dword * sizeof(u32), value); if (IS_ERR(batch)) return PTR_ERR(batch); rq = i915_request_alloc(engine, ctx); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_batch; } err = i915_vma_move_to_active(batch, rq, 0); if (err) goto err_request; i915_gem_object_set_active_reference(batch->obj); err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); if (err) goto err_request; err = engine->emit_bb_start(rq, batch->node.start, batch->node.size, 0); err_request: if (err) i915_request_skip(rq, err); i915_request_add(rq); err_batch: i915_vma_unpin(batch); i915_vma_close(batch); return err; } static int cpu_check(struct drm_i915_gem_object *obj, u32 dword, u32 val) { unsigned int needs_flush; unsigned long n; int err; err = i915_gem_obj_prepare_shmem_read(obj, &needs_flush); if (err) return err; for (n = 0; n < obj->base.size >> PAGE_SHIFT; ++n) { u32 *ptr = kmap_atomic(i915_gem_object_get_page(obj, n)); if (needs_flush & CLFLUSH_BEFORE) drm_clflush_virt_range(ptr, PAGE_SIZE); if (ptr[dword] != val) { pr_err("n=%lu ptr[%u]=%u, val=%u\n", n, dword, ptr[dword], val); kunmap_atomic(ptr); err = -EINVAL; break; } kunmap_atomic(ptr); } i915_gem_obj_finish_shmem_access(obj); return err; } static int __igt_write_huge(struct i915_gem_context *ctx, struct intel_engine_cs *engine, struct drm_i915_gem_object *obj, u64 size, u64 offset, u32 dword, u32 val) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_address_space *vm = ctx->ppgtt ? &ctx->ppgtt->vm : &i915->ggtt.vm; unsigned int flags = PIN_USER | PIN_OFFSET_FIXED; struct i915_vma *vma; int err; vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) return PTR_ERR(vma); err = i915_vma_unbind(vma); if (err) goto out_vma_close; err = i915_vma_pin(vma, size, 0, flags | offset); if (err) { /* * The ggtt may have some pages reserved so * refrain from erroring out. */ if (err == -ENOSPC && i915_is_ggtt(vm)) err = 0; goto out_vma_close; } err = igt_check_page_sizes(vma); if (err) goto out_vma_unpin; err = gpu_write(vma, ctx, engine, dword, val); if (err) { pr_err("gpu-write failed at offset=%llx\n", offset); goto out_vma_unpin; } err = cpu_check(obj, dword, val); if (err) { pr_err("cpu-check failed at offset=%llx\n", offset); goto out_vma_unpin; } out_vma_unpin: i915_vma_unpin(vma); out_vma_close: i915_vma_destroy(vma); return err; } static int igt_write_huge(struct i915_gem_context *ctx, struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_address_space *vm = ctx->ppgtt ? &ctx->ppgtt->vm : &i915->ggtt.vm; static struct intel_engine_cs *engines[I915_NUM_ENGINES]; struct intel_engine_cs *engine; I915_RND_STATE(prng); IGT_TIMEOUT(end_time); unsigned int max_page_size; unsigned int id; u64 max; u64 num; u64 size; int *order; int i, n; int err = 0; GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); size = obj->base.size; if (obj->mm.page_sizes.sg & I915_GTT_PAGE_SIZE_64K) size = round_up(size, I915_GTT_PAGE_SIZE_2M); max_page_size = rounddown_pow_of_two(obj->mm.page_sizes.sg); max = div_u64((vm->total - size), max_page_size); n = 0; for_each_engine(engine, i915, id) { if (!intel_engine_can_store_dword(engine)) { pr_info("store-dword-imm not supported on engine=%u\n", id); continue; } engines[n++] = engine; } if (!n) return 0; /* * To keep things interesting when alternating between engines in our * randomized order, lets also make feeding to the same engine a few * times in succession a possibility by enlarging the permutation array. */ order = i915_random_order(n * I915_NUM_ENGINES, &prng); if (!order) return -ENOMEM; /* * Try various offsets in an ascending/descending fashion until we * timeout -- we want to avoid issues hidden by effectively always using * offset = 0. */ i = 0; for_each_prime_number_from(num, 0, max) { u64 offset_low = num * max_page_size; u64 offset_high = (max - num) * max_page_size; u32 dword = offset_in_page(num) / 4; engine = engines[order[i] % n]; i = (i + 1) % (n * I915_NUM_ENGINES); /* * In order to utilize 64K pages we need to both pad the vma * size and ensure the vma offset is at the start of the pt * boundary, however to improve coverage we opt for testing both * aligned and unaligned offsets. */ if (obj->mm.page_sizes.sg & I915_GTT_PAGE_SIZE_64K) offset_low = round_down(offset_low, I915_GTT_PAGE_SIZE_2M); err = __igt_write_huge(ctx, engine, obj, size, offset_low, dword, num + 1); if (err) break; err = __igt_write_huge(ctx, engine, obj, size, offset_high, dword, num + 1); if (err) break; if (igt_timeout(end_time, "%s timed out on engine=%u, offset_low=%llx offset_high=%llx, max_page_size=%x\n", __func__, engine->id, offset_low, offset_high, max_page_size)) break; } kfree(order); return err; } static int igt_ppgtt_exhaust_huge(void *arg) { struct i915_gem_context *ctx = arg; struct drm_i915_private *i915 = ctx->i915; unsigned long supported = INTEL_INFO(i915)->page_sizes; static unsigned int pages[ARRAY_SIZE(page_sizes)]; struct drm_i915_gem_object *obj; unsigned int size_mask; unsigned int page_mask; int n, i; int err = -ENODEV; if (supported == I915_GTT_PAGE_SIZE_4K) return 0; /* * Sanity check creating objects with a varying mix of page sizes -- * ensuring that our writes lands in the right place. */ n = 0; for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) pages[n++] = BIT(i); for (size_mask = 2; size_mask < BIT(n); size_mask++) { unsigned int size = 0; for (i = 0; i < n; i++) { if (size_mask & BIT(i)) size |= pages[i]; } /* * For our page mask we want to enumerate all the page-size * combinations which will fit into our chosen object size. */ for (page_mask = 2; page_mask <= size_mask; page_mask++) { unsigned int page_sizes = 0; for (i = 0; i < n; i++) { if (page_mask & BIT(i)) page_sizes |= pages[i]; } /* * Ensure that we can actually fill the given object * with our chosen page mask. */ if (!IS_ALIGNED(size, BIT(__ffs(page_sizes)))) continue; obj = huge_pages_object(i915, size, page_sizes); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out_device; } err = i915_gem_object_pin_pages(obj); if (err) { i915_gem_object_put(obj); if (err == -ENOMEM) { pr_info("unable to get pages, size=%u, pages=%u\n", size, page_sizes); err = 0; break; } pr_err("pin_pages failed, size=%u, pages=%u\n", size_mask, page_mask); goto out_device; } /* Force the page-size for the gtt insertion */ obj->mm.page_sizes.sg = page_sizes; err = igt_write_huge(ctx, obj); if (err) { pr_err("exhaust write-huge failed with size=%u\n", size); goto out_unpin; } i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj, I915_MM_NORMAL); i915_gem_object_put(obj); } } goto out_device; out_unpin: i915_gem_object_unpin_pages(obj); i915_gem_object_put(obj); out_device: mkwrite_device_info(i915)->page_sizes = supported; return err; } static int igt_ppgtt_internal_huge(void *arg) { struct i915_gem_context *ctx = arg; struct drm_i915_private *i915 = ctx->i915; struct drm_i915_gem_object *obj; static const unsigned int sizes[] = { SZ_64K, SZ_128K, SZ_256K, SZ_512K, SZ_1M, SZ_2M, }; int i; int err; /* * Sanity check that the HW uses huge pages correctly through internal * -- ensure that our writes land in the right place. */ for (i = 0; i < ARRAY_SIZE(sizes); ++i) { unsigned int size = sizes[i]; obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) return PTR_ERR(obj); err = i915_gem_object_pin_pages(obj); if (err) goto out_put; if (obj->mm.page_sizes.phys < I915_GTT_PAGE_SIZE_64K) { pr_info("internal unable to allocate huge-page(s) with size=%u\n", size); goto out_unpin; } err = igt_write_huge(ctx, obj); if (err) { pr_err("internal write-huge failed with size=%u\n", size); goto out_unpin; } i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj, I915_MM_NORMAL); i915_gem_object_put(obj); } return 0; out_unpin: i915_gem_object_unpin_pages(obj); out_put: i915_gem_object_put(obj); return err; } static inline bool igt_can_allocate_thp(struct drm_i915_private *i915) { return i915->mm.gemfs && has_transparent_hugepage(); } static int igt_ppgtt_gemfs_huge(void *arg) { struct i915_gem_context *ctx = arg; struct drm_i915_private *i915 = ctx->i915; struct drm_i915_gem_object *obj; static const unsigned int sizes[] = { SZ_2M, SZ_4M, SZ_8M, SZ_16M, SZ_32M, }; int i; int err; /* * Sanity check that the HW uses huge pages correctly through gemfs -- * ensure that our writes land in the right place. */ if (!igt_can_allocate_thp(i915)) { pr_info("missing THP support, skipping\n"); return 0; } for (i = 0; i < ARRAY_SIZE(sizes); ++i) { unsigned int size = sizes[i]; obj = i915_gem_object_create(i915, size); if (IS_ERR(obj)) return PTR_ERR(obj); err = i915_gem_object_pin_pages(obj); if (err) goto out_put; if (obj->mm.page_sizes.phys < I915_GTT_PAGE_SIZE_2M) { pr_info("finishing test early, gemfs unable to allocate huge-page(s) with size=%u\n", size); goto out_unpin; } err = igt_write_huge(ctx, obj); if (err) { pr_err("gemfs write-huge failed with size=%u\n", size); goto out_unpin; } i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj, I915_MM_NORMAL); i915_gem_object_put(obj); } return 0; out_unpin: i915_gem_object_unpin_pages(obj); out_put: i915_gem_object_put(obj); return err; } static int igt_ppgtt_pin_update(void *arg) { struct i915_gem_context *ctx = arg; struct drm_i915_private *dev_priv = ctx->i915; unsigned long supported = INTEL_INFO(dev_priv)->page_sizes; struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; struct drm_i915_gem_object *obj; struct i915_vma *vma; unsigned int flags = PIN_USER | PIN_OFFSET_FIXED; int first, last; int err; /* * Make sure there's no funny business when doing a PIN_UPDATE -- in the * past we had a subtle issue with being able to incorrectly do multiple * alloc va ranges on the same object when doing a PIN_UPDATE, which * resulted in some pretty nasty bugs, though only when using * huge-gtt-pages. */ if (!ppgtt || !i915_vm_is_48bit(&ppgtt->vm)) { pr_info("48b PPGTT not supported, skipping\n"); return 0; } first = ilog2(I915_GTT_PAGE_SIZE_64K); last = ilog2(I915_GTT_PAGE_SIZE_2M); for_each_set_bit_from(first, &supported, last + 1) { unsigned int page_size = BIT(first); obj = i915_gem_object_create_internal(dev_priv, page_size); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } err = i915_vma_pin(vma, SZ_2M, 0, flags); if (err) goto out_close; if (vma->page_sizes.sg < page_size) { pr_info("Unable to allocate page-size %x, finishing test early\n", page_size); goto out_unpin; } err = igt_check_page_sizes(vma); if (err) goto out_unpin; if (vma->page_sizes.gtt != page_size) { dma_addr_t addr = i915_gem_object_get_dma_address(obj, 0); /* * The only valid reason for this to ever fail would be * if the dma-mapper screwed us over when we did the * dma_map_sg(), since it has the final say over the dma * address. */ if (IS_ALIGNED(addr, page_size)) { pr_err("page_sizes.gtt=%u, expected=%u\n", vma->page_sizes.gtt, page_size); err = -EINVAL; } else { pr_info("dma address misaligned, finishing test early\n"); } goto out_unpin; } err = i915_vma_bind(vma, I915_CACHE_NONE, PIN_UPDATE); if (err) goto out_unpin; i915_vma_unpin(vma); i915_vma_close(vma); i915_gem_object_put(obj); } obj = i915_gem_object_create_internal(dev_priv, PAGE_SIZE); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } err = i915_vma_pin(vma, 0, 0, flags); if (err) goto out_close; /* * Make sure we don't end up with something like where the pde is still * pointing to the 2M page, and the pt we just filled-in is dangling -- * we can check this by writing to the first page where it would then * land in the now stale 2M page. */ err = gpu_write(vma, ctx, dev_priv->engine[RCS], 0, 0xdeadbeaf); if (err) goto out_unpin; err = cpu_check(obj, 0, 0xdeadbeaf); out_unpin: i915_vma_unpin(vma); out_close: i915_vma_close(vma); out_put: i915_gem_object_put(obj); return err; } static int igt_tmpfs_fallback(void *arg) { struct i915_gem_context *ctx = arg; struct drm_i915_private *i915 = ctx->i915; struct vfsmount *gemfs = i915->mm.gemfs; struct i915_address_space *vm = ctx->ppgtt ? &ctx->ppgtt->vm : &i915->ggtt.vm; struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 *vaddr; int err = 0; /* * Make sure that we don't burst into a ball of flames upon falling back * to tmpfs, which we rely on if on the off-chance we encouter a failure * when setting up gemfs. */ i915->mm.gemfs = NULL; obj = i915_gem_object_create(i915, PAGE_SIZE); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out_restore; } vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto out_put; } *vaddr = 0xdeadbeaf; i915_gem_object_unpin_map(obj); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out_close; err = igt_check_page_sizes(vma); i915_vma_unpin(vma); out_close: i915_vma_close(vma); out_put: i915_gem_object_put(obj); out_restore: i915->mm.gemfs = gemfs; return err; } static int igt_shrink_thp(void *arg) { struct i915_gem_context *ctx = arg; struct drm_i915_private *i915 = ctx->i915; struct i915_address_space *vm = ctx->ppgtt ? &ctx->ppgtt->vm : &i915->ggtt.vm; struct drm_i915_gem_object *obj; struct i915_vma *vma; unsigned int flags = PIN_USER; int err; /* * Sanity check shrinking huge-paged object -- make sure nothing blows * up. */ if (!igt_can_allocate_thp(i915)) { pr_info("missing THP support, skipping\n"); return 0; } obj = i915_gem_object_create(i915, SZ_2M); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } err = i915_vma_pin(vma, 0, 0, flags); if (err) goto out_close; if (obj->mm.page_sizes.phys < I915_GTT_PAGE_SIZE_2M) { pr_info("failed to allocate THP, finishing test early\n"); goto out_unpin; } err = igt_check_page_sizes(vma); if (err) goto out_unpin; err = gpu_write(vma, ctx, i915->engine[RCS], 0, 0xdeadbeaf); if (err) goto out_unpin; i915_vma_unpin(vma); /* * Now that the pages are *unpinned* shrink-all should invoke * shmem to truncate our pages. */ i915_gem_shrink_all(i915); if (i915_gem_object_has_pages(obj)) { pr_err("shrink-all didn't truncate the pages\n"); err = -EINVAL; goto out_close; } if (obj->mm.page_sizes.sg || obj->mm.page_sizes.phys) { pr_err("residual page-size bits left\n"); err = -EINVAL; goto out_close; } err = i915_vma_pin(vma, 0, 0, flags); if (err) goto out_close; err = cpu_check(obj, 0, 0xdeadbeaf); out_unpin: i915_vma_unpin(vma); out_close: i915_vma_close(vma); out_put: i915_gem_object_put(obj); return err; } int i915_gem_huge_page_mock_selftests(void) { static const struct i915_subtest tests[] = { SUBTEST(igt_mock_exhaust_device_supported_pages), SUBTEST(igt_mock_ppgtt_misaligned_dma), SUBTEST(igt_mock_ppgtt_huge_fill), SUBTEST(igt_mock_ppgtt_64K), }; struct drm_i915_private *dev_priv; struct i915_hw_ppgtt *ppgtt; int err; dev_priv = mock_gem_device(); if (!dev_priv) return -ENOMEM; /* Pretend to be a device which supports the 48b PPGTT */ mkwrite_device_info(dev_priv)->ppgtt = INTEL_PPGTT_FULL_4LVL; mutex_lock(&dev_priv->drm.struct_mutex); ppgtt = i915_ppgtt_create(dev_priv, ERR_PTR(-ENODEV)); if (IS_ERR(ppgtt)) { err = PTR_ERR(ppgtt); goto out_unlock; } if (!i915_vm_is_48bit(&ppgtt->vm)) { pr_err("failed to create 48b PPGTT\n"); err = -EINVAL; goto out_close; } /* If we were ever hit this then it's time to mock the 64K scratch */ if (!i915_vm_has_scratch_64K(&ppgtt->vm)) { pr_err("PPGTT missing 64K scratch page\n"); err = -EINVAL; goto out_close; } err = i915_subtests(tests, ppgtt); out_close: i915_ppgtt_close(&ppgtt->vm); i915_ppgtt_put(ppgtt); out_unlock: mutex_unlock(&dev_priv->drm.struct_mutex); drm_dev_put(&dev_priv->drm); return err; } int i915_gem_huge_page_live_selftests(struct drm_i915_private *dev_priv) { static const struct i915_subtest tests[] = { SUBTEST(igt_shrink_thp), SUBTEST(igt_ppgtt_pin_update), SUBTEST(igt_tmpfs_fallback), SUBTEST(igt_ppgtt_exhaust_huge), SUBTEST(igt_ppgtt_gemfs_huge), SUBTEST(igt_ppgtt_internal_huge), }; struct drm_file *file; struct i915_gem_context *ctx; intel_wakeref_t wakeref; int err; if (!HAS_PPGTT(dev_priv)) { pr_info("PPGTT not supported, skipping live-selftests\n"); return 0; } if (i915_terminally_wedged(&dev_priv->gpu_error)) return 0; file = mock_file(dev_priv); if (IS_ERR(file)) return PTR_ERR(file); mutex_lock(&dev_priv->drm.struct_mutex); wakeref = intel_runtime_pm_get(dev_priv); ctx = live_context(dev_priv, file); if (IS_ERR(ctx)) { err = PTR_ERR(ctx); goto out_unlock; } if (ctx->ppgtt) ctx->ppgtt->vm.scrub_64K = true; err = i915_subtests(tests, ctx); out_unlock: intel_runtime_pm_put(dev_priv, wakeref); mutex_unlock(&dev_priv->drm.struct_mutex); mock_file_free(dev_priv, file); return err; }