/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include "../i915_selftest.h" #include "mock_context.h" #include "mock_gem_device.h" static int igt_add_request(void *arg) { struct drm_i915_private *i915 = arg; struct drm_i915_gem_request *request; int err = -ENOMEM; /* Basic preliminary test to create a request and let it loose! */ mutex_lock(&i915->drm.struct_mutex); request = mock_request(i915->engine[RCS], i915->kernel_context, HZ / 10); if (!request) goto out_unlock; i915_add_request(request); err = 0; out_unlock: mutex_unlock(&i915->drm.struct_mutex); return err; } static int igt_wait_request(void *arg) { const long T = HZ / 4; struct drm_i915_private *i915 = arg; struct drm_i915_gem_request *request; int err = -EINVAL; /* Submit a request, then wait upon it */ mutex_lock(&i915->drm.struct_mutex); request = mock_request(i915->engine[RCS], i915->kernel_context, T); if (!request) { err = -ENOMEM; goto out_unlock; } if (i915_wait_request(request, I915_WAIT_LOCKED, 0) != -ETIME) { pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n"); goto out_unlock; } if (i915_wait_request(request, I915_WAIT_LOCKED, T) != -ETIME) { pr_err("request wait succeeded (expected timeout before submit!)\n"); goto out_unlock; } if (i915_gem_request_completed(request)) { pr_err("request completed before submit!!\n"); goto out_unlock; } i915_add_request(request); if (i915_wait_request(request, I915_WAIT_LOCKED, 0) != -ETIME) { pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n"); goto out_unlock; } if (i915_gem_request_completed(request)) { pr_err("request completed immediately!\n"); goto out_unlock; } if (i915_wait_request(request, I915_WAIT_LOCKED, T / 2) != -ETIME) { pr_err("request wait succeeded (expected timeout!)\n"); goto out_unlock; } if (i915_wait_request(request, I915_WAIT_LOCKED, T) == -ETIME) { pr_err("request wait timed out!\n"); goto out_unlock; } if (!i915_gem_request_completed(request)) { pr_err("request not complete after waiting!\n"); goto out_unlock; } if (i915_wait_request(request, I915_WAIT_LOCKED, T) == -ETIME) { pr_err("request wait timed out when already complete!\n"); goto out_unlock; } err = 0; out_unlock: mock_device_flush(i915); mutex_unlock(&i915->drm.struct_mutex); return err; } static int igt_fence_wait(void *arg) { const long T = HZ / 4; struct drm_i915_private *i915 = arg; struct drm_i915_gem_request *request; int err = -EINVAL; /* Submit a request, treat it as a fence and wait upon it */ mutex_lock(&i915->drm.struct_mutex); request = mock_request(i915->engine[RCS], i915->kernel_context, T); if (!request) { err = -ENOMEM; goto out_locked; } mutex_unlock(&i915->drm.struct_mutex); /* safe as we are single user */ if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) { pr_err("fence wait success before submit (expected timeout)!\n"); goto out_device; } mutex_lock(&i915->drm.struct_mutex); i915_add_request(request); mutex_unlock(&i915->drm.struct_mutex); if (dma_fence_is_signaled(&request->fence)) { pr_err("fence signaled immediately!\n"); goto out_device; } if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) { pr_err("fence wait success after submit (expected timeout)!\n"); goto out_device; } if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) { pr_err("fence wait timed out (expected success)!\n"); goto out_device; } if (!dma_fence_is_signaled(&request->fence)) { pr_err("fence unsignaled after waiting!\n"); goto out_device; } if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) { pr_err("fence wait timed out when complete (expected success)!\n"); goto out_device; } err = 0; out_device: mutex_lock(&i915->drm.struct_mutex); out_locked: mock_device_flush(i915); mutex_unlock(&i915->drm.struct_mutex); return err; } static int igt_request_rewind(void *arg) { struct drm_i915_private *i915 = arg; struct drm_i915_gem_request *request, *vip; struct i915_gem_context *ctx[2]; int err = -EINVAL; mutex_lock(&i915->drm.struct_mutex); ctx[0] = mock_context(i915, "A"); request = mock_request(i915->engine[RCS], ctx[0], 2 * HZ); if (!request) { err = -ENOMEM; goto err_context_0; } i915_gem_request_get(request); i915_add_request(request); ctx[1] = mock_context(i915, "B"); vip = mock_request(i915->engine[RCS], ctx[1], 0); if (!vip) { err = -ENOMEM; goto err_context_1; } /* Simulate preemption by manual reordering */ if (!mock_cancel_request(request)) { pr_err("failed to cancel request (already executed)!\n"); i915_add_request(vip); goto err_context_1; } i915_gem_request_get(vip); i915_add_request(vip); rcu_read_lock(); request->engine->submit_request(request); rcu_read_unlock(); mutex_unlock(&i915->drm.struct_mutex); if (i915_wait_request(vip, 0, HZ) == -ETIME) { pr_err("timed out waiting for high priority request, vip.seqno=%d, current seqno=%d\n", vip->global_seqno, intel_engine_get_seqno(i915->engine[RCS])); goto err; } if (i915_gem_request_completed(request)) { pr_err("low priority request already completed\n"); goto err; } err = 0; err: i915_gem_request_put(vip); mutex_lock(&i915->drm.struct_mutex); err_context_1: mock_context_close(ctx[1]); i915_gem_request_put(request); err_context_0: mock_context_close(ctx[0]); mock_device_flush(i915); mutex_unlock(&i915->drm.struct_mutex); return err; } int i915_gem_request_mock_selftests(void) { static const struct i915_subtest tests[] = { SUBTEST(igt_add_request), SUBTEST(igt_wait_request), SUBTEST(igt_fence_wait), SUBTEST(igt_request_rewind), }; struct drm_i915_private *i915; int err; i915 = mock_gem_device(); if (!i915) return -ENOMEM; err = i915_subtests(tests, i915); drm_dev_unref(&i915->drm); return err; } struct live_test { struct drm_i915_private *i915; const char *func; const char *name; unsigned int reset_count; }; static int begin_live_test(struct live_test *t, struct drm_i915_private *i915, const char *func, const char *name) { int err; t->i915 = i915; t->func = func; t->name = name; err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED); if (err) { pr_err("%s(%s): failed to idle before, with err=%d!", func, name, err); return err; } i915->gpu_error.missed_irq_rings = 0; t->reset_count = i915_reset_count(&i915->gpu_error); return 0; } static int end_live_test(struct live_test *t) { struct drm_i915_private *i915 = t->i915; i915_gem_retire_requests(i915); if (wait_for(intel_engines_are_idle(i915), 10)) { pr_err("%s(%s): GPU not idle\n", t->func, t->name); return -EIO; } if (t->reset_count != i915_reset_count(&i915->gpu_error)) { pr_err("%s(%s): GPU was reset %d times!\n", t->func, t->name, i915_reset_count(&i915->gpu_error) - t->reset_count); return -EIO; } if (i915->gpu_error.missed_irq_rings) { pr_err("%s(%s): Missed interrupts on engines %lx\n", t->func, t->name, i915->gpu_error.missed_irq_rings); return -EIO; } return 0; } static int live_nop_request(void *arg) { struct drm_i915_private *i915 = arg; struct intel_engine_cs *engine; struct live_test t; unsigned int id; int err; /* Submit various sized batches of empty requests, to each engine * (individually), and wait for the batch to complete. We can check * the overhead of submitting requests to the hardware. */ mutex_lock(&i915->drm.struct_mutex); for_each_engine(engine, i915, id) { IGT_TIMEOUT(end_time); struct drm_i915_gem_request *request; unsigned long n, prime; ktime_t times[2] = {}; err = begin_live_test(&t, i915, __func__, engine->name); if (err) goto out_unlock; for_each_prime_number_from(prime, 1, 8192) { times[1] = ktime_get_raw(); for (n = 0; n < prime; n++) { request = i915_gem_request_alloc(engine, i915->kernel_context); if (IS_ERR(request)) { err = PTR_ERR(request); goto out_unlock; } /* This space is left intentionally blank. * * We do not actually want to perform any * action with this request, we just want * to measure the latency in allocation * and submission of our breadcrumbs - * ensuring that the bare request is sufficient * for the system to work (i.e. proper HEAD * tracking of the rings, interrupt handling, * etc). It also gives us the lowest bounds * for latency. */ i915_add_request(request); } i915_wait_request(request, I915_WAIT_LOCKED, MAX_SCHEDULE_TIMEOUT); times[1] = ktime_sub(ktime_get_raw(), times[1]); if (prime == 1) times[0] = times[1]; if (__igt_timeout(end_time, NULL)) break; } err = end_live_test(&t); if (err) goto out_unlock; pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n", engine->name, ktime_to_ns(times[0]), prime, div64_u64(ktime_to_ns(times[1]), prime)); } out_unlock: mutex_unlock(&i915->drm.struct_mutex); return err; } static struct i915_vma *empty_batch(struct drm_i915_private *i915) { struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 *cmd; int err; obj = i915_gem_object_create_internal(i915, PAGE_SIZE); if (IS_ERR(obj)) return ERR_CAST(obj); cmd = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(cmd)) { err = PTR_ERR(cmd); goto err; } *cmd = MI_BATCH_BUFFER_END; i915_gem_chipset_flush(i915); i915_gem_object_unpin_map(obj); err = i915_gem_object_set_to_gtt_domain(obj, false); if (err) goto err; vma = i915_vma_instance(obj, &i915->ggtt.base, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err; } err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_GLOBAL); if (err) goto err; return vma; err: i915_gem_object_put(obj); return ERR_PTR(err); } static struct drm_i915_gem_request * empty_request(struct intel_engine_cs *engine, struct i915_vma *batch) { struct drm_i915_gem_request *request; int err; request = i915_gem_request_alloc(engine, engine->i915->kernel_context); if (IS_ERR(request)) return request; err = engine->emit_flush(request, EMIT_INVALIDATE); if (err) goto out_request; err = i915_switch_context(request); if (err) goto out_request; err = engine->emit_bb_start(request, batch->node.start, batch->node.size, I915_DISPATCH_SECURE); if (err) goto out_request; out_request: __i915_add_request(request, err == 0); return err ? ERR_PTR(err) : request; } static int live_empty_request(void *arg) { struct drm_i915_private *i915 = arg; struct intel_engine_cs *engine; struct live_test t; struct i915_vma *batch; unsigned int id; int err = 0; /* Submit various sized batches of empty requests, to each engine * (individually), and wait for the batch to complete. We can check * the overhead of submitting requests to the hardware. */ mutex_lock(&i915->drm.struct_mutex); batch = empty_batch(i915); if (IS_ERR(batch)) { err = PTR_ERR(batch); goto out_unlock; } for_each_engine(engine, i915, id) { IGT_TIMEOUT(end_time); struct drm_i915_gem_request *request; unsigned long n, prime; ktime_t times[2] = {}; err = begin_live_test(&t, i915, __func__, engine->name); if (err) goto out_batch; /* Warmup / preload */ request = empty_request(engine, batch); if (IS_ERR(request)) { err = PTR_ERR(request); goto out_batch; } i915_wait_request(request, I915_WAIT_LOCKED, MAX_SCHEDULE_TIMEOUT); for_each_prime_number_from(prime, 1, 8192) { times[1] = ktime_get_raw(); for (n = 0; n < prime; n++) { request = empty_request(engine, batch); if (IS_ERR(request)) { err = PTR_ERR(request); goto out_batch; } } i915_wait_request(request, I915_WAIT_LOCKED, MAX_SCHEDULE_TIMEOUT); times[1] = ktime_sub(ktime_get_raw(), times[1]); if (prime == 1) times[0] = times[1]; if (__igt_timeout(end_time, NULL)) break; } err = end_live_test(&t); if (err) goto out_batch; pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n", engine->name, ktime_to_ns(times[0]), prime, div64_u64(ktime_to_ns(times[1]), prime)); } out_batch: i915_vma_unpin(batch); i915_vma_put(batch); out_unlock: mutex_unlock(&i915->drm.struct_mutex); return err; } static struct i915_vma *recursive_batch(struct drm_i915_private *i915) { struct i915_gem_context *ctx = i915->kernel_context; struct i915_address_space *vm = ctx->ppgtt ? &ctx->ppgtt->base : &i915->ggtt.base; struct drm_i915_gem_object *obj; const int gen = INTEL_GEN(i915); struct i915_vma *vma; u32 *cmd; int err; obj = i915_gem_object_create_internal(i915, PAGE_SIZE); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto err; err = i915_gem_object_set_to_wc_domain(obj, true); if (err) goto err; cmd = i915_gem_object_pin_map(obj, I915_MAP_WC); if (IS_ERR(cmd)) { err = PTR_ERR(cmd); goto err; } if (gen >= 8) { *cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1; *cmd++ = lower_32_bits(vma->node.start); *cmd++ = upper_32_bits(vma->node.start); } else if (gen >= 6) { *cmd++ = MI_BATCH_BUFFER_START | 1 << 8; *cmd++ = lower_32_bits(vma->node.start); } else if (gen >= 4) { *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; *cmd++ = lower_32_bits(vma->node.start); } else { *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | 1; *cmd++ = lower_32_bits(vma->node.start); } *cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */ i915_gem_chipset_flush(i915); i915_gem_object_unpin_map(obj); return vma; err: i915_gem_object_put(obj); return ERR_PTR(err); } static int recursive_batch_resolve(struct i915_vma *batch) { u32 *cmd; cmd = i915_gem_object_pin_map(batch->obj, I915_MAP_WC); if (IS_ERR(cmd)) return PTR_ERR(cmd); *cmd = MI_BATCH_BUFFER_END; i915_gem_chipset_flush(batch->vm->i915); i915_gem_object_unpin_map(batch->obj); return 0; } static int live_all_engines(void *arg) { struct drm_i915_private *i915 = arg; struct intel_engine_cs *engine; struct drm_i915_gem_request *request[I915_NUM_ENGINES]; struct i915_vma *batch; struct live_test t; unsigned int id; int err; /* Check we can submit requests to all engines simultaneously. We * send a recursive batch to each engine - checking that we don't * block doing so, and that they don't complete too soon. */ mutex_lock(&i915->drm.struct_mutex); err = begin_live_test(&t, i915, __func__, ""); if (err) goto out_unlock; batch = recursive_batch(i915); if (IS_ERR(batch)) { err = PTR_ERR(batch); pr_err("%s: Unable to create batch, err=%d\n", __func__, err); goto out_unlock; } for_each_engine(engine, i915, id) { request[id] = i915_gem_request_alloc(engine, i915->kernel_context); if (IS_ERR(request[id])) { err = PTR_ERR(request[id]); pr_err("%s: Request allocation failed with err=%d\n", __func__, err); goto out_request; } err = engine->emit_flush(request[id], EMIT_INVALIDATE); GEM_BUG_ON(err); err = i915_switch_context(request[id]); GEM_BUG_ON(err); err = engine->emit_bb_start(request[id], batch->node.start, batch->node.size, 0); GEM_BUG_ON(err); request[id]->batch = batch; if (!i915_gem_object_has_active_reference(batch->obj)) { i915_gem_object_get(batch->obj); i915_gem_object_set_active_reference(batch->obj); } i915_vma_move_to_active(batch, request[id], 0); i915_gem_request_get(request[id]); i915_add_request(request[id]); } for_each_engine(engine, i915, id) { if (i915_gem_request_completed(request[id])) { pr_err("%s(%s): request completed too early!\n", __func__, engine->name); err = -EINVAL; goto out_request; } } err = recursive_batch_resolve(batch); if (err) { pr_err("%s: failed to resolve batch, err=%d\n", __func__, err); goto out_request; } for_each_engine(engine, i915, id) { long timeout; timeout = i915_wait_request(request[id], I915_WAIT_LOCKED, MAX_SCHEDULE_TIMEOUT); if (timeout < 0) { err = timeout; pr_err("%s: error waiting for request on %s, err=%d\n", __func__, engine->name, err); goto out_request; } GEM_BUG_ON(!i915_gem_request_completed(request[id])); i915_gem_request_put(request[id]); request[id] = NULL; } err = end_live_test(&t); out_request: for_each_engine(engine, i915, id) if (request[id]) i915_gem_request_put(request[id]); i915_vma_unpin(batch); i915_vma_put(batch); out_unlock: mutex_unlock(&i915->drm.struct_mutex); return err; } static int live_sequential_engines(void *arg) { struct drm_i915_private *i915 = arg; struct drm_i915_gem_request *request[I915_NUM_ENGINES] = {}; struct drm_i915_gem_request *prev = NULL; struct intel_engine_cs *engine; struct live_test t; unsigned int id; int err; /* Check we can submit requests to all engines sequentially, such * that each successive request waits for the earlier ones. This * tests that we don't execute requests out of order, even though * they are running on independent engines. */ mutex_lock(&i915->drm.struct_mutex); err = begin_live_test(&t, i915, __func__, ""); if (err) goto out_unlock; for_each_engine(engine, i915, id) { struct i915_vma *batch; batch = recursive_batch(i915); if (IS_ERR(batch)) { err = PTR_ERR(batch); pr_err("%s: Unable to create batch for %s, err=%d\n", __func__, engine->name, err); goto out_unlock; } request[id] = i915_gem_request_alloc(engine, i915->kernel_context); if (IS_ERR(request[id])) { err = PTR_ERR(request[id]); pr_err("%s: Request allocation failed for %s with err=%d\n", __func__, engine->name, err); goto out_request; } if (prev) { err = i915_gem_request_await_dma_fence(request[id], &prev->fence); if (err) { i915_add_request(request[id]); pr_err("%s: Request await failed for %s with err=%d\n", __func__, engine->name, err); goto out_request; } } err = engine->emit_flush(request[id], EMIT_INVALIDATE); GEM_BUG_ON(err); err = i915_switch_context(request[id]); GEM_BUG_ON(err); err = engine->emit_bb_start(request[id], batch->node.start, batch->node.size, 0); GEM_BUG_ON(err); request[id]->batch = batch; i915_vma_move_to_active(batch, request[id], 0); i915_gem_object_set_active_reference(batch->obj); i915_vma_get(batch); i915_gem_request_get(request[id]); i915_add_request(request[id]); prev = request[id]; } for_each_engine(engine, i915, id) { long timeout; if (i915_gem_request_completed(request[id])) { pr_err("%s(%s): request completed too early!\n", __func__, engine->name); err = -EINVAL; goto out_request; } err = recursive_batch_resolve(request[id]->batch); if (err) { pr_err("%s: failed to resolve batch, err=%d\n", __func__, err); goto out_request; } timeout = i915_wait_request(request[id], I915_WAIT_LOCKED, MAX_SCHEDULE_TIMEOUT); if (timeout < 0) { err = timeout; pr_err("%s: error waiting for request on %s, err=%d\n", __func__, engine->name, err); goto out_request; } GEM_BUG_ON(!i915_gem_request_completed(request[id])); } err = end_live_test(&t); out_request: for_each_engine(engine, i915, id) { u32 *cmd; if (!request[id]) break; cmd = i915_gem_object_pin_map(request[id]->batch->obj, I915_MAP_WC); if (!IS_ERR(cmd)) { *cmd = MI_BATCH_BUFFER_END; i915_gem_chipset_flush(i915); i915_gem_object_unpin_map(request[id]->batch->obj); } i915_vma_put(request[id]->batch); i915_gem_request_put(request[id]); } out_unlock: mutex_unlock(&i915->drm.struct_mutex); return err; } int i915_gem_request_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_nop_request), SUBTEST(live_all_engines), SUBTEST(live_sequential_engines), SUBTEST(live_empty_request), }; return i915_subtests(tests, i915); }