/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include "dpu_encoder_phys.h" #include "dpu_hw_interrupts.h" #include "dpu_core_irq.h" #include "dpu_formats.h" #include "dpu_trace.h" #define DPU_DEBUG_VIDENC(e, fmt, ...) DPU_DEBUG("enc%d intf%d " fmt, \ (e) && (e)->base.parent ? \ (e)->base.parent->base.id : -1, \ (e) && (e)->hw_intf ? \ (e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__) #define DPU_ERROR_VIDENC(e, fmt, ...) DPU_ERROR("enc%d intf%d " fmt, \ (e) && (e)->base.parent ? \ (e)->base.parent->base.id : -1, \ (e) && (e)->hw_intf ? \ (e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__) #define to_dpu_encoder_phys_vid(x) \ container_of(x, struct dpu_encoder_phys_vid, base) static bool dpu_encoder_phys_vid_is_master( struct dpu_encoder_phys *phys_enc) { bool ret = false; if (phys_enc->split_role != ENC_ROLE_SLAVE) ret = true; return ret; } static void drm_mode_to_intf_timing_params( const struct dpu_encoder_phys_vid *vid_enc, const struct drm_display_mode *mode, struct intf_timing_params *timing) { memset(timing, 0, sizeof(*timing)); if ((mode->htotal < mode->hsync_end) || (mode->hsync_start < mode->hdisplay) || (mode->vtotal < mode->vsync_end) || (mode->vsync_start < mode->vdisplay) || (mode->hsync_end < mode->hsync_start) || (mode->vsync_end < mode->vsync_start)) { DPU_ERROR( "invalid params - hstart:%d,hend:%d,htot:%d,hdisplay:%d\n", mode->hsync_start, mode->hsync_end, mode->htotal, mode->hdisplay); DPU_ERROR("vstart:%d,vend:%d,vtot:%d,vdisplay:%d\n", mode->vsync_start, mode->vsync_end, mode->vtotal, mode->vdisplay); return; } /* * https://www.kernel.org/doc/htmldocs/drm/ch02s05.html * Active Region Front Porch Sync Back Porch * <-----------------><------------><-----><-----------> * <- [hv]display ---> * <--------- [hv]sync_start ------> * <----------------- [hv]sync_end -------> * <---------------------------- [hv]total -------------> */ timing->width = mode->hdisplay; /* active width */ timing->height = mode->vdisplay; /* active height */ timing->xres = timing->width; timing->yres = timing->height; timing->h_back_porch = mode->htotal - mode->hsync_end; timing->h_front_porch = mode->hsync_start - mode->hdisplay; timing->v_back_porch = mode->vtotal - mode->vsync_end; timing->v_front_porch = mode->vsync_start - mode->vdisplay; timing->hsync_pulse_width = mode->hsync_end - mode->hsync_start; timing->vsync_pulse_width = mode->vsync_end - mode->vsync_start; timing->hsync_polarity = (mode->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0; timing->vsync_polarity = (mode->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0; timing->border_clr = 0; timing->underflow_clr = 0xff; timing->hsync_skew = mode->hskew; /* DSI controller cannot handle active-low sync signals. */ if (vid_enc->hw_intf->cap->type == INTF_DSI) { timing->hsync_polarity = 0; timing->vsync_polarity = 0; } /* * For edp only: * DISPLAY_V_START = (VBP * HCYCLE) + HBP * DISPLAY_V_END = (VBP + VACTIVE) * HCYCLE - 1 - HFP */ /* * if (vid_enc->hw->cap->type == INTF_EDP) { * display_v_start += mode->htotal - mode->hsync_start; * display_v_end -= mode->hsync_start - mode->hdisplay; * } */ } static inline u32 get_horizontal_total(const struct intf_timing_params *timing) { u32 active = timing->xres; u32 inactive = timing->h_back_porch + timing->h_front_porch + timing->hsync_pulse_width; return active + inactive; } static inline u32 get_vertical_total(const struct intf_timing_params *timing) { u32 active = timing->yres; u32 inactive = timing->v_back_porch + timing->v_front_porch + timing->vsync_pulse_width; return active + inactive; } /* * programmable_fetch_get_num_lines: * Number of fetch lines in vertical front porch * @timing: Pointer to the intf timing information for the requested mode * * Returns the number of fetch lines in vertical front porch at which mdp * can start fetching the next frame. * * Number of needed prefetch lines is anything that cannot be absorbed in the * start of frame time (back porch + vsync pulse width). * * Some panels have very large VFP, however we only need a total number of * lines based on the chip worst case latencies. */ static u32 programmable_fetch_get_num_lines( struct dpu_encoder_phys_vid *vid_enc, const struct intf_timing_params *timing) { u32 worst_case_needed_lines = vid_enc->hw_intf->cap->prog_fetch_lines_worst_case; u32 start_of_frame_lines = timing->v_back_porch + timing->vsync_pulse_width; u32 needed_vfp_lines = worst_case_needed_lines - start_of_frame_lines; u32 actual_vfp_lines = 0; /* Fetch must be outside active lines, otherwise undefined. */ if (start_of_frame_lines >= worst_case_needed_lines) { DPU_DEBUG_VIDENC(vid_enc, "prog fetch is not needed, large vbp+vsw\n"); actual_vfp_lines = 0; } else if (timing->v_front_porch < needed_vfp_lines) { /* Warn fetch needed, but not enough porch in panel config */ pr_warn_once ("low vbp+vfp may lead to perf issues in some cases\n"); DPU_DEBUG_VIDENC(vid_enc, "less vfp than fetch req, using entire vfp\n"); actual_vfp_lines = timing->v_front_porch; } else { DPU_DEBUG_VIDENC(vid_enc, "room in vfp for needed prefetch\n"); actual_vfp_lines = needed_vfp_lines; } DPU_DEBUG_VIDENC(vid_enc, "v_front_porch %u v_back_porch %u vsync_pulse_width %u\n", timing->v_front_porch, timing->v_back_porch, timing->vsync_pulse_width); DPU_DEBUG_VIDENC(vid_enc, "wc_lines %u needed_vfp_lines %u actual_vfp_lines %u\n", worst_case_needed_lines, needed_vfp_lines, actual_vfp_lines); return actual_vfp_lines; } /* * programmable_fetch_config: Programs HW to prefetch lines by offsetting * the start of fetch into the vertical front porch for cases where the * vsync pulse width and vertical back porch time is insufficient * * Gets # of lines to pre-fetch, then calculate VSYNC counter value. * HW layer requires VSYNC counter of first pixel of tgt VFP line. * * @timing: Pointer to the intf timing information for the requested mode */ static void programmable_fetch_config(struct dpu_encoder_phys *phys_enc, const struct intf_timing_params *timing) { struct dpu_encoder_phys_vid *vid_enc = to_dpu_encoder_phys_vid(phys_enc); struct intf_prog_fetch f = { 0 }; u32 vfp_fetch_lines = 0; u32 horiz_total = 0; u32 vert_total = 0; u32 vfp_fetch_start_vsync_counter = 0; unsigned long lock_flags; if (WARN_ON_ONCE(!vid_enc->hw_intf->ops.setup_prg_fetch)) return; vfp_fetch_lines = programmable_fetch_get_num_lines(vid_enc, timing); if (vfp_fetch_lines) { vert_total = get_vertical_total(timing); horiz_total = get_horizontal_total(timing); vfp_fetch_start_vsync_counter = (vert_total - vfp_fetch_lines) * horiz_total + 1; f.enable = 1; f.fetch_start = vfp_fetch_start_vsync_counter; } DPU_DEBUG_VIDENC(vid_enc, "vfp_fetch_lines %u vfp_fetch_start_vsync_counter %u\n", vfp_fetch_lines, vfp_fetch_start_vsync_counter); spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); vid_enc->hw_intf->ops.setup_prg_fetch(vid_enc->hw_intf, &f); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); } static bool dpu_encoder_phys_vid_mode_fixup( struct dpu_encoder_phys *phys_enc, const struct drm_display_mode *mode, struct drm_display_mode *adj_mode) { if (phys_enc) DPU_DEBUG_VIDENC(to_dpu_encoder_phys_vid(phys_enc), "\n"); /* * Modifying mode has consequences when the mode comes back to us */ return true; } static void dpu_encoder_phys_vid_setup_timing_engine( struct dpu_encoder_phys *phys_enc) { struct dpu_encoder_phys_vid *vid_enc; struct drm_display_mode mode; struct intf_timing_params timing_params = { 0 }; const struct dpu_format *fmt = NULL; u32 fmt_fourcc = DRM_FORMAT_RGB888; unsigned long lock_flags; struct dpu_hw_intf_cfg intf_cfg = { 0 }; if (!phys_enc || !phys_enc->hw_ctl->ops.setup_intf_cfg) { DPU_ERROR("invalid encoder %d\n", phys_enc != 0); return; } mode = phys_enc->cached_mode; vid_enc = to_dpu_encoder_phys_vid(phys_enc); if (!vid_enc->hw_intf->ops.setup_timing_gen) { DPU_ERROR("timing engine setup is not supported\n"); return; } DPU_DEBUG_VIDENC(vid_enc, "enabling mode:\n"); drm_mode_debug_printmodeline(&mode); if (phys_enc->split_role != ENC_ROLE_SOLO) { mode.hdisplay >>= 1; mode.htotal >>= 1; mode.hsync_start >>= 1; mode.hsync_end >>= 1; DPU_DEBUG_VIDENC(vid_enc, "split_role %d, halve horizontal %d %d %d %d\n", phys_enc->split_role, mode.hdisplay, mode.htotal, mode.hsync_start, mode.hsync_end); } drm_mode_to_intf_timing_params(vid_enc, &mode, &timing_params); fmt = dpu_get_dpu_format(fmt_fourcc); DPU_DEBUG_VIDENC(vid_enc, "fmt_fourcc 0x%X\n", fmt_fourcc); intf_cfg.intf = vid_enc->hw_intf->idx; intf_cfg.intf_mode_sel = DPU_CTL_MODE_SEL_VID; intf_cfg.stream_sel = 0; /* Don't care value for video mode */ intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc); spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); vid_enc->hw_intf->ops.setup_timing_gen(vid_enc->hw_intf, &timing_params, fmt); phys_enc->hw_ctl->ops.setup_intf_cfg(phys_enc->hw_ctl, &intf_cfg); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); programmable_fetch_config(phys_enc, &timing_params); vid_enc->timing_params = timing_params; } static void dpu_encoder_phys_vid_vblank_irq(void *arg, int irq_idx) { struct dpu_encoder_phys *phys_enc = arg; struct dpu_hw_ctl *hw_ctl; unsigned long lock_flags; u32 flush_register = 0; int new_cnt = -1, old_cnt = -1; if (!phys_enc) return; hw_ctl = phys_enc->hw_ctl; if (!hw_ctl) return; DPU_ATRACE_BEGIN("vblank_irq"); if (phys_enc->parent_ops->handle_vblank_virt) phys_enc->parent_ops->handle_vblank_virt(phys_enc->parent, phys_enc); old_cnt = atomic_read(&phys_enc->pending_kickoff_cnt); /* * only decrement the pending flush count if we've actually flushed * hardware. due to sw irq latency, vblank may have already happened * so we need to double-check with hw that it accepted the flush bits */ spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); if (hw_ctl && hw_ctl->ops.get_flush_register) flush_register = hw_ctl->ops.get_flush_register(hw_ctl); if (flush_register == 0) new_cnt = atomic_add_unless(&phys_enc->pending_kickoff_cnt, -1, 0); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); /* Signal any waiting atomic commit thread */ wake_up_all(&phys_enc->pending_kickoff_wq); DPU_ATRACE_END("vblank_irq"); } static void dpu_encoder_phys_vid_underrun_irq(void *arg, int irq_idx) { struct dpu_encoder_phys *phys_enc = arg; if (!phys_enc) return; if (phys_enc->parent_ops->handle_underrun_virt) phys_enc->parent_ops->handle_underrun_virt(phys_enc->parent, phys_enc); } static bool _dpu_encoder_phys_is_dual_ctl(struct dpu_encoder_phys *phys_enc) { struct dpu_crtc_state *dpu_cstate; if (!phys_enc) return false; dpu_cstate = to_dpu_crtc_state(phys_enc->parent->crtc->state); return dpu_cstate->num_ctls > 1; } static bool dpu_encoder_phys_vid_needs_single_flush( struct dpu_encoder_phys *phys_enc) { return (phys_enc && _dpu_encoder_phys_is_dual_ctl(phys_enc)); } static void _dpu_encoder_phys_vid_setup_irq_hw_idx( struct dpu_encoder_phys *phys_enc) { struct dpu_encoder_irq *irq; /* * Initialize irq->hw_idx only when irq is not registered. * Prevent invalidating irq->irq_idx as modeset may be * called many times during dfps. */ irq = &phys_enc->irq[INTR_IDX_VSYNC]; if (irq->irq_idx < 0) irq->hw_idx = phys_enc->intf_idx; irq = &phys_enc->irq[INTR_IDX_UNDERRUN]; if (irq->irq_idx < 0) irq->hw_idx = phys_enc->intf_idx; } static void dpu_encoder_phys_vid_mode_set( struct dpu_encoder_phys *phys_enc, struct drm_display_mode *mode, struct drm_display_mode *adj_mode) { struct dpu_encoder_phys_vid *vid_enc; if (!phys_enc || !phys_enc->dpu_kms) { DPU_ERROR("invalid encoder/kms\n"); return; } vid_enc = to_dpu_encoder_phys_vid(phys_enc); if (adj_mode) { phys_enc->cached_mode = *adj_mode; drm_mode_debug_printmodeline(adj_mode); DPU_DEBUG_VIDENC(vid_enc, "caching mode:\n"); } _dpu_encoder_phys_vid_setup_irq_hw_idx(phys_enc); } static int dpu_encoder_phys_vid_control_vblank_irq( struct dpu_encoder_phys *phys_enc, bool enable) { int ret = 0; struct dpu_encoder_phys_vid *vid_enc; int refcount; if (!phys_enc) { DPU_ERROR("invalid encoder\n"); return -EINVAL; } refcount = atomic_read(&phys_enc->vblank_refcount); vid_enc = to_dpu_encoder_phys_vid(phys_enc); /* Slave encoders don't report vblank */ if (!dpu_encoder_phys_vid_is_master(phys_enc)) goto end; /* protect against negative */ if (!enable && refcount == 0) { ret = -EINVAL; goto end; } DRM_DEBUG_KMS("id:%u enable=%d/%d\n", DRMID(phys_enc->parent), enable, atomic_read(&phys_enc->vblank_refcount)); if (enable && atomic_inc_return(&phys_enc->vblank_refcount) == 1) ret = dpu_encoder_helper_register_irq(phys_enc, INTR_IDX_VSYNC); else if (!enable && atomic_dec_return(&phys_enc->vblank_refcount) == 0) ret = dpu_encoder_helper_unregister_irq(phys_enc, INTR_IDX_VSYNC); end: if (ret) { DRM_ERROR("failed: id:%u intf:%d ret:%d enable:%d refcnt:%d\n", DRMID(phys_enc->parent), vid_enc->hw_intf->idx - INTF_0, ret, enable, refcount); } return ret; } static void dpu_encoder_phys_vid_enable(struct dpu_encoder_phys *phys_enc) { struct msm_drm_private *priv; struct dpu_encoder_phys_vid *vid_enc; struct dpu_rm_hw_iter iter; struct dpu_hw_ctl *ctl; u32 flush_mask = 0; if (!phys_enc || !phys_enc->parent || !phys_enc->parent->dev || !phys_enc->parent->dev->dev_private) { DPU_ERROR("invalid encoder/device\n"); return; } priv = phys_enc->parent->dev->dev_private; vid_enc = to_dpu_encoder_phys_vid(phys_enc); ctl = phys_enc->hw_ctl; dpu_rm_init_hw_iter(&iter, phys_enc->parent->base.id, DPU_HW_BLK_INTF); while (dpu_rm_get_hw(&phys_enc->dpu_kms->rm, &iter)) { struct dpu_hw_intf *hw_intf = (struct dpu_hw_intf *)iter.hw; if (hw_intf->idx == phys_enc->intf_idx) { vid_enc->hw_intf = hw_intf; break; } } if (!vid_enc->hw_intf) { DPU_ERROR("hw_intf not assigned\n"); return; } DPU_DEBUG_VIDENC(vid_enc, "\n"); if (WARN_ON(!vid_enc->hw_intf->ops.enable_timing)) return; dpu_encoder_helper_split_config(phys_enc, vid_enc->hw_intf->idx); dpu_encoder_phys_vid_setup_timing_engine(phys_enc); /* * For single flush cases (dual-ctl or pp-split), skip setting the * flush bit for the slave intf, since both intfs use same ctl * and HW will only flush the master. */ if (dpu_encoder_phys_vid_needs_single_flush(phys_enc) && !dpu_encoder_phys_vid_is_master(phys_enc)) goto skip_flush; ctl->ops.get_bitmask_intf(ctl, &flush_mask, vid_enc->hw_intf->idx); ctl->ops.update_pending_flush(ctl, flush_mask); skip_flush: DPU_DEBUG_VIDENC(vid_enc, "update pending flush ctl %d flush_mask %x\n", ctl->idx - CTL_0, flush_mask); /* ctl_flush & timing engine enable will be triggered by framework */ if (phys_enc->enable_state == DPU_ENC_DISABLED) phys_enc->enable_state = DPU_ENC_ENABLING; } static void dpu_encoder_phys_vid_destroy(struct dpu_encoder_phys *phys_enc) { struct dpu_encoder_phys_vid *vid_enc; if (!phys_enc) { DPU_ERROR("invalid encoder\n"); return; } vid_enc = to_dpu_encoder_phys_vid(phys_enc); DPU_DEBUG_VIDENC(vid_enc, "\n"); kfree(vid_enc); } static void dpu_encoder_phys_vid_get_hw_resources( struct dpu_encoder_phys *phys_enc, struct dpu_encoder_hw_resources *hw_res) { hw_res->intfs[phys_enc->intf_idx - INTF_0] = INTF_MODE_VIDEO; } static int _dpu_encoder_phys_vid_wait_for_vblank( struct dpu_encoder_phys *phys_enc, bool notify) { struct dpu_encoder_wait_info wait_info; int ret; if (!phys_enc) { pr_err("invalid encoder\n"); return -EINVAL; } wait_info.wq = &phys_enc->pending_kickoff_wq; wait_info.atomic_cnt = &phys_enc->pending_kickoff_cnt; wait_info.timeout_ms = KICKOFF_TIMEOUT_MS; if (!dpu_encoder_phys_vid_is_master(phys_enc)) { if (notify && phys_enc->parent_ops->handle_frame_done) phys_enc->parent_ops->handle_frame_done( phys_enc->parent, phys_enc, DPU_ENCODER_FRAME_EVENT_DONE); return 0; } /* Wait for kickoff to complete */ ret = dpu_encoder_helper_wait_for_irq(phys_enc, INTR_IDX_VSYNC, &wait_info); if (ret == -ETIMEDOUT) { dpu_encoder_helper_report_irq_timeout(phys_enc, INTR_IDX_VSYNC); } else if (!ret && notify && phys_enc->parent_ops->handle_frame_done) phys_enc->parent_ops->handle_frame_done( phys_enc->parent, phys_enc, DPU_ENCODER_FRAME_EVENT_DONE); return ret; } static int dpu_encoder_phys_vid_wait_for_vblank( struct dpu_encoder_phys *phys_enc) { return _dpu_encoder_phys_vid_wait_for_vblank(phys_enc, true); } static void dpu_encoder_phys_vid_prepare_for_kickoff( struct dpu_encoder_phys *phys_enc, struct dpu_encoder_kickoff_params *params) { struct dpu_encoder_phys_vid *vid_enc; struct dpu_hw_ctl *ctl; int rc; if (!phys_enc || !params) { DPU_ERROR("invalid encoder/parameters\n"); return; } vid_enc = to_dpu_encoder_phys_vid(phys_enc); ctl = phys_enc->hw_ctl; if (!ctl || !ctl->ops.wait_reset_status) return; /* * hw supports hardware initiated ctl reset, so before we kickoff a new * frame, need to check and wait for hw initiated ctl reset completion */ rc = ctl->ops.wait_reset_status(ctl); if (rc) { DPU_ERROR_VIDENC(vid_enc, "ctl %d reset failure: %d\n", ctl->idx, rc); dpu_encoder_helper_unregister_irq(phys_enc, INTR_IDX_VSYNC); dpu_dbg_dump(false, __func__, true, true); } } static void dpu_encoder_phys_vid_disable(struct dpu_encoder_phys *phys_enc) { struct msm_drm_private *priv; struct dpu_encoder_phys_vid *vid_enc; unsigned long lock_flags; int ret; if (!phys_enc || !phys_enc->parent || !phys_enc->parent->dev || !phys_enc->parent->dev->dev_private) { DPU_ERROR("invalid encoder/device\n"); return; } priv = phys_enc->parent->dev->dev_private; vid_enc = to_dpu_encoder_phys_vid(phys_enc); if (!vid_enc->hw_intf || !phys_enc->hw_ctl) { DPU_ERROR("invalid hw_intf %d hw_ctl %d\n", vid_enc->hw_intf != 0, phys_enc->hw_ctl != 0); return; } DPU_DEBUG_VIDENC(vid_enc, "\n"); if (WARN_ON(!vid_enc->hw_intf->ops.enable_timing)) return; if (phys_enc->enable_state == DPU_ENC_DISABLED) { DPU_ERROR("already disabled\n"); return; } spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); vid_enc->hw_intf->ops.enable_timing(vid_enc->hw_intf, 0); if (dpu_encoder_phys_vid_is_master(phys_enc)) dpu_encoder_phys_inc_pending(phys_enc); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); /* * Wait for a vsync so we know the ENABLE=0 latched before * the (connector) source of the vsync's gets disabled, * otherwise we end up in a funny state if we re-enable * before the disable latches, which results that some of * the settings changes for the new modeset (like new * scanout buffer) don't latch properly.. */ if (dpu_encoder_phys_vid_is_master(phys_enc)) { ret = _dpu_encoder_phys_vid_wait_for_vblank(phys_enc, false); if (ret) { atomic_set(&phys_enc->pending_kickoff_cnt, 0); DRM_ERROR("wait disable failed: id:%u intf:%d ret:%d\n", DRMID(phys_enc->parent), vid_enc->hw_intf->idx - INTF_0, ret); } } phys_enc->enable_state = DPU_ENC_DISABLED; } static void dpu_encoder_phys_vid_handle_post_kickoff( struct dpu_encoder_phys *phys_enc) { unsigned long lock_flags; struct dpu_encoder_phys_vid *vid_enc; if (!phys_enc) { DPU_ERROR("invalid encoder\n"); return; } vid_enc = to_dpu_encoder_phys_vid(phys_enc); DPU_DEBUG_VIDENC(vid_enc, "enable_state %d\n", phys_enc->enable_state); /* * Video mode must flush CTL before enabling timing engine * Video encoders need to turn on their interfaces now */ if (phys_enc->enable_state == DPU_ENC_ENABLING) { trace_dpu_enc_phys_vid_post_kickoff(DRMID(phys_enc->parent), vid_enc->hw_intf->idx - INTF_0); spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); vid_enc->hw_intf->ops.enable_timing(vid_enc->hw_intf, 1); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); phys_enc->enable_state = DPU_ENC_ENABLED; } } static void dpu_encoder_phys_vid_irq_control(struct dpu_encoder_phys *phys_enc, bool enable) { struct dpu_encoder_phys_vid *vid_enc; int ret; if (!phys_enc) return; vid_enc = to_dpu_encoder_phys_vid(phys_enc); trace_dpu_enc_phys_vid_irq_ctrl(DRMID(phys_enc->parent), vid_enc->hw_intf->idx - INTF_0, enable, atomic_read(&phys_enc->vblank_refcount)); if (enable) { ret = dpu_encoder_phys_vid_control_vblank_irq(phys_enc, true); if (ret) return; dpu_encoder_helper_register_irq(phys_enc, INTR_IDX_UNDERRUN); } else { dpu_encoder_phys_vid_control_vblank_irq(phys_enc, false); dpu_encoder_helper_unregister_irq(phys_enc, INTR_IDX_UNDERRUN); } } static int dpu_encoder_phys_vid_get_line_count( struct dpu_encoder_phys *phys_enc) { struct dpu_encoder_phys_vid *vid_enc; if (!phys_enc) return -EINVAL; if (!dpu_encoder_phys_vid_is_master(phys_enc)) return -EINVAL; vid_enc = to_dpu_encoder_phys_vid(phys_enc); if (!vid_enc->hw_intf || !vid_enc->hw_intf->ops.get_line_count) return -EINVAL; return vid_enc->hw_intf->ops.get_line_count(vid_enc->hw_intf); } static void dpu_encoder_phys_vid_init_ops(struct dpu_encoder_phys_ops *ops) { ops->is_master = dpu_encoder_phys_vid_is_master; ops->mode_set = dpu_encoder_phys_vid_mode_set; ops->mode_fixup = dpu_encoder_phys_vid_mode_fixup; ops->enable = dpu_encoder_phys_vid_enable; ops->disable = dpu_encoder_phys_vid_disable; ops->destroy = dpu_encoder_phys_vid_destroy; ops->get_hw_resources = dpu_encoder_phys_vid_get_hw_resources; ops->control_vblank_irq = dpu_encoder_phys_vid_control_vblank_irq; ops->wait_for_commit_done = dpu_encoder_phys_vid_wait_for_vblank; ops->wait_for_vblank = dpu_encoder_phys_vid_wait_for_vblank; ops->wait_for_tx_complete = dpu_encoder_phys_vid_wait_for_vblank; ops->irq_control = dpu_encoder_phys_vid_irq_control; ops->prepare_for_kickoff = dpu_encoder_phys_vid_prepare_for_kickoff; ops->handle_post_kickoff = dpu_encoder_phys_vid_handle_post_kickoff; ops->needs_single_flush = dpu_encoder_phys_vid_needs_single_flush; ops->hw_reset = dpu_encoder_helper_hw_reset; ops->get_line_count = dpu_encoder_phys_vid_get_line_count; } struct dpu_encoder_phys *dpu_encoder_phys_vid_init( struct dpu_enc_phys_init_params *p) { struct dpu_encoder_phys *phys_enc = NULL; struct dpu_encoder_phys_vid *vid_enc = NULL; struct dpu_encoder_irq *irq; int i, ret = 0; if (!p) { ret = -EINVAL; goto fail; } vid_enc = kzalloc(sizeof(*vid_enc), GFP_KERNEL); if (!vid_enc) { ret = -ENOMEM; goto fail; } phys_enc = &vid_enc->base; phys_enc->hw_mdptop = p->dpu_kms->hw_mdp; phys_enc->intf_idx = p->intf_idx; DPU_DEBUG_VIDENC(vid_enc, "\n"); dpu_encoder_phys_vid_init_ops(&phys_enc->ops); phys_enc->parent = p->parent; phys_enc->parent_ops = p->parent_ops; phys_enc->dpu_kms = p->dpu_kms; phys_enc->split_role = p->split_role; phys_enc->intf_mode = INTF_MODE_VIDEO; phys_enc->enc_spinlock = p->enc_spinlock; for (i = 0; i < INTR_IDX_MAX; i++) { irq = &phys_enc->irq[i]; INIT_LIST_HEAD(&irq->cb.list); irq->irq_idx = -EINVAL; irq->hw_idx = -EINVAL; irq->cb.arg = phys_enc; } irq = &phys_enc->irq[INTR_IDX_VSYNC]; irq->name = "vsync_irq"; irq->intr_type = DPU_IRQ_TYPE_INTF_VSYNC; irq->intr_idx = INTR_IDX_VSYNC; irq->cb.func = dpu_encoder_phys_vid_vblank_irq; irq = &phys_enc->irq[INTR_IDX_UNDERRUN]; irq->name = "underrun"; irq->intr_type = DPU_IRQ_TYPE_INTF_UNDER_RUN; irq->intr_idx = INTR_IDX_UNDERRUN; irq->cb.func = dpu_encoder_phys_vid_underrun_irq; atomic_set(&phys_enc->vblank_refcount, 0); atomic_set(&phys_enc->pending_kickoff_cnt, 0); init_waitqueue_head(&phys_enc->pending_kickoff_wq); phys_enc->enable_state = DPU_ENC_DISABLED; DPU_DEBUG_VIDENC(vid_enc, "created intf idx:%d\n", p->intf_idx); return phys_enc; fail: DPU_ERROR("failed to create encoder\n"); if (vid_enc) dpu_encoder_phys_vid_destroy(phys_enc); return ERR_PTR(ret); }