/* * Copyright (c) 2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include "dsi.h" #include "dsi.xml.h" #define dsi_phy_read(offset) msm_readl((offset)) #define dsi_phy_write(offset, data) msm_writel((data), (offset)) struct dsi_phy_ops { int (*enable)(struct msm_dsi_phy *phy, bool is_dual_panel, const unsigned long bit_rate, const unsigned long esc_rate); int (*disable)(struct msm_dsi_phy *phy); }; struct dsi_phy_cfg { enum msm_dsi_phy_type type; struct dsi_reg_config reg_cfg; struct dsi_phy_ops ops; }; struct dsi_dphy_timing { u32 clk_pre; u32 clk_post; u32 clk_zero; u32 clk_trail; u32 clk_prepare; u32 hs_exit; u32 hs_zero; u32 hs_prepare; u32 hs_trail; u32 hs_rqst; u32 ta_go; u32 ta_sure; u32 ta_get; }; struct msm_dsi_phy { struct platform_device *pdev; void __iomem *base; void __iomem *reg_base; int id; struct clk *ahb_clk; struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX]; struct dsi_dphy_timing timing; const struct dsi_phy_cfg *cfg; struct msm_dsi_pll *pll; }; static int dsi_phy_regulator_init(struct msm_dsi_phy *phy) { struct regulator_bulk_data *s = phy->supplies; const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; struct device *dev = &phy->pdev->dev; int num = phy->cfg->reg_cfg.num; int i, ret; for (i = 0; i < num; i++) s[i].supply = regs[i].name; ret = devm_regulator_bulk_get(&phy->pdev->dev, num, s); if (ret < 0) { dev_err(dev, "%s: failed to init regulator, ret=%d\n", __func__, ret); return ret; } for (i = 0; i < num; i++) { if ((regs[i].min_voltage >= 0) && (regs[i].max_voltage >= 0)) { ret = regulator_set_voltage(s[i].consumer, regs[i].min_voltage, regs[i].max_voltage); if (ret < 0) { dev_err(dev, "regulator %d set voltage failed, %d\n", i, ret); return ret; } } } return 0; } static void dsi_phy_regulator_disable(struct msm_dsi_phy *phy) { struct regulator_bulk_data *s = phy->supplies; const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; int num = phy->cfg->reg_cfg.num; int i; DBG(""); for (i = num - 1; i >= 0; i--) if (regs[i].disable_load >= 0) regulator_set_load(s[i].consumer, regs[i].disable_load); regulator_bulk_disable(num, s); } static int dsi_phy_regulator_enable(struct msm_dsi_phy *phy) { struct regulator_bulk_data *s = phy->supplies; const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; struct device *dev = &phy->pdev->dev; int num = phy->cfg->reg_cfg.num; int ret, i; DBG(""); for (i = 0; i < num; i++) { if (regs[i].enable_load >= 0) { ret = regulator_set_load(s[i].consumer, regs[i].enable_load); if (ret < 0) { dev_err(dev, "regulator %d set op mode failed, %d\n", i, ret); goto fail; } } } ret = regulator_bulk_enable(num, s); if (ret < 0) { dev_err(dev, "regulator enable failed, %d\n", ret); goto fail; } return 0; fail: for (i--; i >= 0; i--) regulator_set_load(s[i].consumer, regs[i].disable_load); return ret; } #define S_DIV_ROUND_UP(n, d) \ (((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d))) static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent, s32 min_result, bool even) { s32 v; v = (tmax - tmin) * percent; v = S_DIV_ROUND_UP(v, 100) + tmin; if (even && (v & 0x1)) return max_t(s32, min_result, v - 1); else return max_t(s32, min_result, v); } static void dsi_dphy_timing_calc_clk_zero(struct dsi_dphy_timing *timing, s32 ui, s32 coeff, s32 pcnt) { s32 tmax, tmin, clk_z; s32 temp; /* reset */ temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui; tmin = S_DIV_ROUND_UP(temp, ui) - 2; if (tmin > 255) { tmax = 511; clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true); } else { tmax = 255; clk_z = linear_inter(tmax, tmin, pcnt, 0, true); } /* adjust */ temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7; timing->clk_zero = clk_z + 8 - temp; } static int dsi_dphy_timing_calc(struct dsi_dphy_timing *timing, const unsigned long bit_rate, const unsigned long esc_rate) { s32 ui, lpx; s32 tmax, tmin; s32 pcnt0 = 10; s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10; s32 pcnt2 = 10; s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40; s32 coeff = 1000; /* Precision, should avoid overflow */ s32 temp; if (!bit_rate || !esc_rate) return -EINVAL; ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000); tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2; tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2; timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true); temp = lpx / ui; if (temp & 0x1) timing->hs_rqst = temp; else timing->hs_rqst = max_t(s32, 0, temp - 2); /* Calculate clk_zero after clk_prepare and hs_rqst */ dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2); temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = S_DIV_ROUND_UP(temp, ui) - 2; tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2; timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true); temp = 85 * coeff + 6 * ui; tmax = S_DIV_ROUND_UP(temp, ui) - 2; temp = 40 * coeff + 4 * ui; tmin = S_DIV_ROUND_UP(temp, ui) - 2; timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true); tmax = 255; temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui; temp = 145 * coeff + 10 * ui - temp; tmin = S_DIV_ROUND_UP(temp, ui) - 2; timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true); temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = S_DIV_ROUND_UP(temp, ui) - 2; temp = 60 * coeff + 4 * ui; tmin = DIV_ROUND_UP(temp, ui) - 2; timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true); tmax = 255; tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2; timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true); tmax = 63; temp = ((timing->hs_exit >> 1) + 1) * 2 * ui; temp = 60 * coeff + 52 * ui - 24 * ui - temp; tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; timing->clk_post = linear_inter(tmax, tmin, pcnt2, 0, false); tmax = 63; temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui; temp += ((timing->clk_zero >> 1) + 1) * 2 * ui; temp += 8 * ui + lpx; tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; if (tmin > tmax) { temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false) >> 1; timing->clk_pre = temp >> 1; temp = (2 * tmax - tmin) * pcnt2; } else { timing->clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false); } timing->ta_go = 3; timing->ta_sure = 0; timing->ta_get = 4; DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", timing->clk_pre, timing->clk_post, timing->clk_zero, timing->clk_trail, timing->clk_prepare, timing->hs_exit, timing->hs_zero, timing->hs_prepare, timing->hs_trail, timing->hs_rqst); return 0; } static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy, bool enable) { void __iomem *base = phy->reg_base; if (!enable) { dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0); return; } dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 1); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x3); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x9); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x7); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20); } static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel, const unsigned long bit_rate, const unsigned long esc_rate) { struct dsi_dphy_timing *timing = &phy->timing; int i; void __iomem *base = phy->base; DBG(""); if (dsi_dphy_timing_calc(timing, bit_rate, esc_rate)) { pr_err("%s: D-PHY timing calculation failed\n", __func__); return -EINVAL; } dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_0, 0xff); dsi_28nm_phy_regulator_ctrl(phy, true); dsi_phy_write(base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x00); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_0, DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_1, DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_2, DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare)); if (timing->clk_zero & BIT(8)) dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_3, DSI_28nm_PHY_TIMING_CTRL_3_CLK_ZERO_8); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_4, DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_5, DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_6, DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_7, DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_8, DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_9, DSI_28nm_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) | DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_10, DSI_28nm_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_11, DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD(0)); dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_1, 0x00); dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f); dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_1, 0x6); for (i = 0; i < 4; i++) { dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_0(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_1(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_2(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_3(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_DATAPATH(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_DEBUG_SEL(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_0(i), 0x1); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_1(i), 0x97); } dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(0), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(1), 0x5); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(2), 0xa); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(3), 0xf); dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_1, 0xc0); dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR0, 0x1); dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR1, 0xbb); dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f); if (is_dual_panel && (phy->id != DSI_CLOCK_MASTER)) dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, 0x00); else dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, 0x01); return 0; } static int dsi_28nm_phy_disable(struct msm_dsi_phy *phy) { dsi_phy_write(phy->base + REG_DSI_28nm_PHY_CTRL_0, 0); dsi_28nm_phy_regulator_ctrl(phy, false); /* * Wait for the registers writes to complete in order to * ensure that the phy is completely disabled */ wmb(); return 0; } static int dsi_phy_enable_resource(struct msm_dsi_phy *phy) { int ret; pm_runtime_get_sync(&phy->pdev->dev); ret = clk_prepare_enable(phy->ahb_clk); if (ret) { pr_err("%s: can't enable ahb clk, %d\n", __func__, ret); pm_runtime_put_sync(&phy->pdev->dev); } return ret; } static void dsi_phy_disable_resource(struct msm_dsi_phy *phy) { clk_disable_unprepare(phy->ahb_clk); pm_runtime_put_sync(&phy->pdev->dev); } static const struct dsi_phy_cfg dsi_phy_cfgs[MSM_DSI_PHY_MAX] = { [MSM_DSI_PHY_28NM_HPM] = { .type = MSM_DSI_PHY_28NM_HPM, .reg_cfg = { .num = 1, .regs = { {"vddio", 1800000, 1800000, 100000, 100}, }, }, .ops = { .enable = dsi_28nm_phy_enable, .disable = dsi_28nm_phy_disable, } }, [MSM_DSI_PHY_28NM_LP] = { .type = MSM_DSI_PHY_28NM_LP, .reg_cfg = { .num = 1, .regs = { {"vddio", 1800000, 1800000, 100000, 100}, }, }, .ops = { .enable = dsi_28nm_phy_enable, .disable = dsi_28nm_phy_disable, } }, }; static const struct of_device_id dsi_phy_dt_match[] = { { .compatible = "qcom,dsi-phy-28nm-hpm", .data = &dsi_phy_cfgs[MSM_DSI_PHY_28NM_HPM],}, { .compatible = "qcom,dsi-phy-28nm-lp", .data = &dsi_phy_cfgs[MSM_DSI_PHY_28NM_LP],}, {} }; static int dsi_phy_driver_probe(struct platform_device *pdev) { struct msm_dsi_phy *phy; const struct of_device_id *match; int ret; phy = devm_kzalloc(&pdev->dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; match = of_match_node(dsi_phy_dt_match, pdev->dev.of_node); if (!match) return -ENODEV; phy->cfg = match->data; phy->pdev = pdev; ret = of_property_read_u32(pdev->dev.of_node, "qcom,dsi-phy-index", &phy->id); if (ret) { dev_err(&pdev->dev, "%s: PHY index not specified, ret=%d\n", __func__, ret); goto fail; } phy->base = msm_ioremap(pdev, "dsi_phy", "DSI_PHY"); if (IS_ERR(phy->base)) { dev_err(&pdev->dev, "%s: failed to map phy base\n", __func__); ret = -ENOMEM; goto fail; } phy->reg_base = msm_ioremap(pdev, "dsi_phy_regulator", "DSI_PHY_REG"); if (IS_ERR(phy->reg_base)) { dev_err(&pdev->dev, "%s: failed to map phy regulator base\n", __func__); ret = -ENOMEM; goto fail; } ret = dsi_phy_regulator_init(phy); if (ret) { dev_err(&pdev->dev, "%s: failed to init regulator\n", __func__); goto fail; } phy->ahb_clk = devm_clk_get(&pdev->dev, "iface_clk"); if (IS_ERR(phy->ahb_clk)) { pr_err("%s: Unable to get ahb clk\n", __func__); ret = PTR_ERR(phy->ahb_clk); goto fail; } /* PLL init will call into clk_register which requires * register access, so we need to enable power and ahb clock. */ ret = dsi_phy_enable_resource(phy); if (ret) goto fail; phy->pll = msm_dsi_pll_init(pdev, phy->cfg->type, phy->id); if (!phy->pll) dev_info(&pdev->dev, "%s: pll init failed, need separate pll clk driver\n", __func__); dsi_phy_disable_resource(phy); platform_set_drvdata(pdev, phy); return 0; fail: return ret; } static int dsi_phy_driver_remove(struct platform_device *pdev) { struct msm_dsi_phy *phy = platform_get_drvdata(pdev); if (phy && phy->pll) { msm_dsi_pll_destroy(phy->pll); phy->pll = NULL; } platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver dsi_phy_platform_driver = { .probe = dsi_phy_driver_probe, .remove = dsi_phy_driver_remove, .driver = { .name = "msm_dsi_phy", .of_match_table = dsi_phy_dt_match, }, }; void __init msm_dsi_phy_driver_register(void) { platform_driver_register(&dsi_phy_platform_driver); } void __exit msm_dsi_phy_driver_unregister(void) { platform_driver_unregister(&dsi_phy_platform_driver); } int msm_dsi_phy_enable(struct msm_dsi_phy *phy, bool is_dual_panel, const unsigned long bit_rate, const unsigned long esc_rate) { int ret; if (!phy || !phy->cfg->ops.enable) return -EINVAL; ret = dsi_phy_regulator_enable(phy); if (ret) { dev_err(&phy->pdev->dev, "%s: regulator enable failed, %d\n", __func__, ret); return ret; } return phy->cfg->ops.enable(phy, is_dual_panel, bit_rate, esc_rate); } int msm_dsi_phy_disable(struct msm_dsi_phy *phy) { if (!phy || !phy->cfg->ops.disable) return -EINVAL; phy->cfg->ops.disable(phy); dsi_phy_regulator_disable(phy); return 0; } void msm_dsi_phy_get_clk_pre_post(struct msm_dsi_phy *phy, u32 *clk_pre, u32 *clk_post) { if (!phy) return; if (clk_pre) *clk_pre = phy->timing.clk_pre; if (clk_post) *clk_post = phy->timing.clk_post; } struct msm_dsi_pll *msm_dsi_phy_get_pll(struct msm_dsi_phy *phy) { if (!phy) return NULL; return phy->pll; }