/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include #include #include #include struct nv50_fb_priv { struct nouveau_fb base; struct page *r100c08_page; dma_addr_t r100c08; }; static int types[0x80] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 0, 2, 0, 1, 0, 2, 0, 1, 1, 2, 2, 1, 1, 0, 0 }; static bool nv50_fb_memtype_valid(struct nouveau_fb *pfb, u32 memtype) { return types[(memtype & 0xff00) >> 8] != 0; } static u32 nv50_fb_vram_rblock(struct nouveau_fb *pfb) { int i, parts, colbits, rowbitsa, rowbitsb, banks; u64 rowsize, predicted; u32 r0, r4, rt, ru, rblock_size; r0 = nv_rd32(pfb, 0x100200); r4 = nv_rd32(pfb, 0x100204); rt = nv_rd32(pfb, 0x100250); ru = nv_rd32(pfb, 0x001540); nv_debug(pfb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n", r0, r4, rt, ru); for (i = 0, parts = 0; i < 8; i++) { if (ru & (0x00010000 << i)) parts++; } colbits = (r4 & 0x0000f000) >> 12; rowbitsa = ((r4 & 0x000f0000) >> 16) + 8; rowbitsb = ((r4 & 0x00f00000) >> 20) + 8; banks = 1 << (((r4 & 0x03000000) >> 24) + 2); rowsize = parts * banks * (1 << colbits) * 8; predicted = rowsize << rowbitsa; if (r0 & 0x00000004) predicted += rowsize << rowbitsb; if (predicted != pfb->ram.size) { nv_warn(pfb, "memory controller reports %d MiB VRAM\n", (u32)(pfb->ram.size >> 20)); } rblock_size = rowsize; if (rt & 1) rblock_size *= 3; nv_debug(pfb, "rblock %d bytes\n", rblock_size); return rblock_size; } static int nv50_fb_vram_init(struct nouveau_fb *pfb) { struct nouveau_device *device = nv_device(pfb); struct nouveau_bios *bios = nouveau_bios(device); const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */ const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */ u32 size; int ret; pfb->ram.size = nv_rd32(pfb, 0x10020c); pfb->ram.size = (pfb->ram.size & 0xffffff00) | ((pfb->ram.size & 0x000000ff) << 32); size = (pfb->ram.size >> 12) - rsvd_head - rsvd_tail; switch (device->chipset) { case 0xaa: case 0xac: case 0xaf: /* IGPs, no reordering, no real VRAM */ ret = nouveau_mm_init(&pfb->vram, rsvd_head, size, 1); if (ret) return ret; pfb->ram.type = NV_MEM_TYPE_STOLEN; pfb->ram.stolen = (u64)nv_rd32(pfb, 0x100e10) << 12; break; default: switch (nv_rd32(pfb, 0x100714) & 0x00000007) { case 0: pfb->ram.type = NV_MEM_TYPE_DDR1; break; case 1: if (nouveau_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3) pfb->ram.type = NV_MEM_TYPE_DDR3; else pfb->ram.type = NV_MEM_TYPE_DDR2; break; case 2: pfb->ram.type = NV_MEM_TYPE_GDDR3; break; case 3: pfb->ram.type = NV_MEM_TYPE_GDDR4; break; case 4: pfb->ram.type = NV_MEM_TYPE_GDDR5; break; default: break; } ret = nouveau_mm_init(&pfb->vram, rsvd_head, size, nv50_fb_vram_rblock(pfb) >> 12); if (ret) return ret; pfb->ram.ranks = (nv_rd32(pfb, 0x100200) & 0x4) ? 2 : 1; break; } return nv_rd32(pfb, 0x100320); } static int nv50_fb_vram_new(struct nouveau_fb *pfb, u64 size, u32 align, u32 ncmin, u32 memtype, struct nouveau_mem **pmem) { struct nv50_fb_priv *priv = (void *)pfb; struct nouveau_mm *heap = &priv->base.vram; struct nouveau_mm *tags = &priv->base.tags; struct nouveau_mm_node *r; struct nouveau_mem *mem; int comp = (memtype & 0x300) >> 8; int type = (memtype & 0x07f); int back = (memtype & 0x800); int min, max, ret; max = (size >> 12); min = ncmin ? (ncmin >> 12) : max; align >>= 12; mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return -ENOMEM; mutex_lock(&pfb->base.mutex); if (comp) { if (align == 16) { int n = (max >> 4) * comp; ret = nouveau_mm_head(tags, 1, n, n, 1, &mem->tag); if (ret) mem->tag = NULL; } if (unlikely(!mem->tag)) comp = 0; } INIT_LIST_HEAD(&mem->regions); mem->memtype = (comp << 7) | type; mem->size = max; type = types[type]; do { if (back) ret = nouveau_mm_tail(heap, type, max, min, align, &r); else ret = nouveau_mm_head(heap, type, max, min, align, &r); if (ret) { mutex_unlock(&pfb->base.mutex); pfb->ram.put(pfb, &mem); return ret; } list_add_tail(&r->rl_entry, &mem->regions); max -= r->length; } while (max); mutex_unlock(&pfb->base.mutex); r = list_first_entry(&mem->regions, struct nouveau_mm_node, rl_entry); mem->offset = (u64)r->offset << 12; *pmem = mem; return 0; } void nv50_fb_vram_del(struct nouveau_fb *pfb, struct nouveau_mem **pmem) { struct nv50_fb_priv *priv = (void *)pfb; struct nouveau_mm_node *this; struct nouveau_mem *mem; mem = *pmem; *pmem = NULL; if (unlikely(mem == NULL)) return; mutex_lock(&pfb->base.mutex); while (!list_empty(&mem->regions)) { this = list_first_entry(&mem->regions, typeof(*this), rl_entry); list_del(&this->rl_entry); nouveau_mm_free(&priv->base.vram, &this); } nouveau_mm_free(&priv->base.tags, &mem->tag); mutex_unlock(&pfb->base.mutex); kfree(mem); } static const struct nouveau_enum vm_dispatch_subclients[] = { { 0x00000000, "GRCTX", NULL }, { 0x00000001, "NOTIFY", NULL }, { 0x00000002, "QUERY", NULL }, { 0x00000003, "COND", NULL }, { 0x00000004, "M2M_IN", NULL }, { 0x00000005, "M2M_OUT", NULL }, { 0x00000006, "M2M_NOTIFY", NULL }, {} }; static const struct nouveau_enum vm_ccache_subclients[] = { { 0x00000000, "CB", NULL }, { 0x00000001, "TIC", NULL }, { 0x00000002, "TSC", NULL }, {} }; static const struct nouveau_enum vm_prop_subclients[] = { { 0x00000000, "RT0", NULL }, { 0x00000001, "RT1", NULL }, { 0x00000002, "RT2", NULL }, { 0x00000003, "RT3", NULL }, { 0x00000004, "RT4", NULL }, { 0x00000005, "RT5", NULL }, { 0x00000006, "RT6", NULL }, { 0x00000007, "RT7", NULL }, { 0x00000008, "ZETA", NULL }, { 0x00000009, "LOCAL", NULL }, { 0x0000000a, "GLOBAL", NULL }, { 0x0000000b, "STACK", NULL }, { 0x0000000c, "DST2D", NULL }, {} }; static const struct nouveau_enum vm_pfifo_subclients[] = { { 0x00000000, "PUSHBUF", NULL }, { 0x00000001, "SEMAPHORE", NULL }, {} }; static const struct nouveau_enum vm_bar_subclients[] = { { 0x00000000, "FB", NULL }, { 0x00000001, "IN", NULL }, {} }; static const struct nouveau_enum vm_client[] = { { 0x00000000, "STRMOUT", NULL }, { 0x00000003, "DISPATCH", vm_dispatch_subclients }, { 0x00000004, "PFIFO_WRITE", NULL }, { 0x00000005, "CCACHE", vm_ccache_subclients }, { 0x00000006, "PPPP", NULL }, { 0x00000007, "CLIPID", NULL }, { 0x00000008, "PFIFO_READ", NULL }, { 0x00000009, "VFETCH", NULL }, { 0x0000000a, "TEXTURE", NULL }, { 0x0000000b, "PROP", vm_prop_subclients }, { 0x0000000c, "PVP", NULL }, { 0x0000000d, "PBSP", NULL }, { 0x0000000e, "PCRYPT", NULL }, { 0x0000000f, "PCOUNTER", NULL }, { 0x00000011, "PDAEMON", NULL }, {} }; static const struct nouveau_enum vm_engine[] = { { 0x00000000, "PGRAPH", NULL }, { 0x00000001, "PVP", NULL }, { 0x00000004, "PEEPHOLE", NULL }, { 0x00000005, "PFIFO", vm_pfifo_subclients }, { 0x00000006, "BAR", vm_bar_subclients }, { 0x00000008, "PPPP", NULL }, { 0x00000009, "PBSP", NULL }, { 0x0000000a, "PCRYPT", NULL }, { 0x0000000b, "PCOUNTER", NULL }, { 0x0000000c, "SEMAPHORE_BG", NULL }, { 0x0000000d, "PCOPY", NULL }, { 0x0000000e, "PDAEMON", NULL }, {} }; static const struct nouveau_enum vm_fault[] = { { 0x00000000, "PT_NOT_PRESENT", NULL }, { 0x00000001, "PT_TOO_SHORT", NULL }, { 0x00000002, "PAGE_NOT_PRESENT", NULL }, { 0x00000003, "PAGE_SYSTEM_ONLY", NULL }, { 0x00000004, "PAGE_READ_ONLY", NULL }, { 0x00000006, "NULL_DMAOBJ", NULL }, { 0x00000007, "WRONG_MEMTYPE", NULL }, { 0x0000000b, "VRAM_LIMIT", NULL }, { 0x0000000f, "DMAOBJ_LIMIT", NULL }, {} }; static void nv50_fb_intr(struct nouveau_subdev *subdev) { struct nouveau_device *device = nv_device(subdev); struct nv50_fb_priv *priv = (void *)subdev; const struct nouveau_enum *en, *cl; u32 trap[6], idx, chan; u8 st0, st1, st2, st3; int i; idx = nv_rd32(priv, 0x100c90); if (!(idx & 0x80000000)) return; idx &= 0x00ffffff; for (i = 0; i < 6; i++) { nv_wr32(priv, 0x100c90, idx | i << 24); trap[i] = nv_rd32(priv, 0x100c94); } nv_wr32(priv, 0x100c90, idx | 0x80000000); /* decode status bits into something more useful */ if (device->chipset < 0xa3 || device->chipset == 0xaa || device->chipset == 0xac) { st0 = (trap[0] & 0x0000000f) >> 0; st1 = (trap[0] & 0x000000f0) >> 4; st2 = (trap[0] & 0x00000f00) >> 8; st3 = (trap[0] & 0x0000f000) >> 12; } else { st0 = (trap[0] & 0x000000ff) >> 0; st1 = (trap[0] & 0x0000ff00) >> 8; st2 = (trap[0] & 0x00ff0000) >> 16; st3 = (trap[0] & 0xff000000) >> 24; } chan = (trap[2] << 16) | trap[1]; nv_error(priv, "trapped %s at 0x%02x%04x%04x on channel 0x%08x ", (trap[5] & 0x00000100) ? "read" : "write", trap[5] & 0xff, trap[4] & 0xffff, trap[3] & 0xffff, chan); en = nouveau_enum_find(vm_engine, st0); if (en) printk("%s/", en->name); else printk("%02x/", st0); cl = nouveau_enum_find(vm_client, st2); if (cl) printk("%s/", cl->name); else printk("%02x/", st2); if (cl && cl->data) cl = nouveau_enum_find(cl->data, st3); else if (en && en->data) cl = nouveau_enum_find(en->data, st3); else cl = NULL; if (cl) printk("%s", cl->name); else printk("%02x", st3); printk(" reason: "); en = nouveau_enum_find(vm_fault, st1); if (en) printk("%s\n", en->name); else printk("0x%08x\n", st1); } static int nv50_fb_ctor(struct nouveau_object *parent, struct nouveau_object *engine, struct nouveau_oclass *oclass, void *data, u32 size, struct nouveau_object **pobject) { struct nouveau_device *device = nv_device(parent); struct nv50_fb_priv *priv; int ret; ret = nouveau_fb_create(parent, engine, oclass, &priv); *pobject = nv_object(priv); if (ret) return ret; priv->r100c08_page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (priv->r100c08_page) { priv->r100c08 = pci_map_page(device->pdev, priv->r100c08_page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(device->pdev, priv->r100c08)) nv_warn(priv, "failed 0x100c08 page map\n"); } else { nv_warn(priv, "failed 0x100c08 page alloc\n"); } priv->base.memtype_valid = nv50_fb_memtype_valid; priv->base.ram.init = nv50_fb_vram_init; priv->base.ram.get = nv50_fb_vram_new; priv->base.ram.put = nv50_fb_vram_del; nv_subdev(priv)->intr = nv50_fb_intr; return nouveau_fb_preinit(&priv->base); } static void nv50_fb_dtor(struct nouveau_object *object) { struct nouveau_device *device = nv_device(object); struct nv50_fb_priv *priv = (void *)object; if (priv->r100c08_page) { pci_unmap_page(device->pdev, priv->r100c08, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); __free_page(priv->r100c08_page); } nouveau_fb_destroy(&priv->base); } static int nv50_fb_init(struct nouveau_object *object) { struct nouveau_device *device = nv_device(object); struct nv50_fb_priv *priv = (void *)object; int ret; ret = nouveau_fb_init(&priv->base); if (ret) return ret; /* Not a clue what this is exactly. Without pointing it at a * scratch page, VRAM->GART blits with M2MF (as in DDX DFS) * cause IOMMU "read from address 0" errors (rh#561267) */ nv_wr32(priv, 0x100c08, priv->r100c08 >> 8); /* This is needed to get meaningful information from 100c90 * on traps. No idea what these values mean exactly. */ switch (device->chipset) { case 0x50: nv_wr32(priv, 0x100c90, 0x000707ff); break; case 0xa3: case 0xa5: case 0xa8: nv_wr32(priv, 0x100c90, 0x000d0fff); break; case 0xaf: nv_wr32(priv, 0x100c90, 0x089d1fff); break; default: nv_wr32(priv, 0x100c90, 0x001d07ff); break; } return 0; } struct nouveau_oclass nv50_fb_oclass = { .handle = NV_SUBDEV(FB, 0x50), .ofuncs = &(struct nouveau_ofuncs) { .ctor = nv50_fb_ctor, .dtor = nv50_fb_dtor, .init = nv50_fb_init, .fini = _nouveau_fb_fini, }, };