// SPDX-License-Identifier: MIT #include #include #include #include #include #include #include #include #include #include "nouveau_drv.h" #include "core.h" #include "head.h" #include "wndw.h" #include "handles.h" #include "crc.h" static const char * const nv50_crc_sources[] = { [NV50_CRC_SOURCE_NONE] = "none", [NV50_CRC_SOURCE_AUTO] = "auto", [NV50_CRC_SOURCE_RG] = "rg", [NV50_CRC_SOURCE_OUTP_ACTIVE] = "outp-active", [NV50_CRC_SOURCE_OUTP_COMPLETE] = "outp-complete", [NV50_CRC_SOURCE_OUTP_INACTIVE] = "outp-inactive", }; static int nv50_crc_parse_source(const char *buf, enum nv50_crc_source *s) { int i; if (!buf) { *s = NV50_CRC_SOURCE_NONE; return 0; } i = match_string(nv50_crc_sources, ARRAY_SIZE(nv50_crc_sources), buf); if (i < 0) return i; *s = i; return 0; } int nv50_crc_verify_source(struct drm_crtc *crtc, const char *source_name, size_t *values_cnt) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); enum nv50_crc_source source; if (nv50_crc_parse_source(source_name, &source) < 0) { NV_DEBUG(drm, "unknown source %s\n", source_name); return -EINVAL; } *values_cnt = 1; return 0; } const char *const *nv50_crc_get_sources(struct drm_crtc *crtc, size_t *count) { *count = ARRAY_SIZE(nv50_crc_sources); return nv50_crc_sources; } static void nv50_crc_program_ctx(struct nv50_head *head, struct nv50_crc_notifier_ctx *ctx) { struct nv50_disp *disp = nv50_disp(head->base.base.dev); struct nv50_core *core = disp->core; u32 interlock[NV50_DISP_INTERLOCK__SIZE] = { 0 }; core->func->crc->set_ctx(head, ctx); core->func->update(core, interlock, false); } static void nv50_crc_ctx_flip_work(struct kthread_work *base) { struct drm_vblank_work *work = to_drm_vblank_work(base); struct nv50_crc *crc = container_of(work, struct nv50_crc, flip_work); struct nv50_head *head = container_of(crc, struct nv50_head, crc); struct drm_crtc *crtc = &head->base.base; struct nv50_disp *disp = nv50_disp(crtc->dev); u8 new_idx = crc->ctx_idx ^ 1; /* * We don't want to accidentally wait for longer then the vblank, so * try again for the next vblank if we don't grab the lock */ if (!mutex_trylock(&disp->mutex)) { DRM_DEV_DEBUG_KMS(crtc->dev->dev, "Lock contended, delaying CRC ctx flip for head-%d\n", head->base.index); drm_vblank_work_schedule(work, drm_crtc_vblank_count(crtc) + 1, true); return; } DRM_DEV_DEBUG_KMS(crtc->dev->dev, "Flipping notifier ctx for head %d (%d -> %d)\n", drm_crtc_index(crtc), crc->ctx_idx, new_idx); nv50_crc_program_ctx(head, NULL); nv50_crc_program_ctx(head, &crc->ctx[new_idx]); mutex_unlock(&disp->mutex); spin_lock_irq(&crc->lock); crc->ctx_changed = true; spin_unlock_irq(&crc->lock); } static inline void nv50_crc_reset_ctx(struct nv50_crc_notifier_ctx *ctx) { memset_io(ctx->mem.object.map.ptr, 0, ctx->mem.object.map.size); } static void nv50_crc_get_entries(struct nv50_head *head, const struct nv50_crc_func *func, enum nv50_crc_source source) { struct drm_crtc *crtc = &head->base.base; struct nv50_crc *crc = &head->crc; u32 output_crc; while (crc->entry_idx < func->num_entries) { /* * While Nvidia's documentation says CRCs are written on each * subsequent vblank after being enabled, in practice they * aren't written immediately. */ output_crc = func->get_entry(head, &crc->ctx[crc->ctx_idx], source, crc->entry_idx); if (!output_crc) return; drm_crtc_add_crc_entry(crtc, true, crc->frame, &output_crc); crc->frame++; crc->entry_idx++; } } void nv50_crc_handle_vblank(struct nv50_head *head) { struct drm_crtc *crtc = &head->base.base; struct nv50_crc *crc = &head->crc; const struct nv50_crc_func *func = nv50_disp(head->base.base.dev)->core->func->crc; struct nv50_crc_notifier_ctx *ctx; bool need_reschedule = false; if (!func) return; /* * We don't lose events if we aren't able to report CRCs until the * next vblank, so only report CRCs if the locks we need aren't * contended to prevent missing an actual vblank event */ if (!spin_trylock(&crc->lock)) return; if (!crc->src) goto out; ctx = &crc->ctx[crc->ctx_idx]; if (crc->ctx_changed && func->ctx_finished(head, ctx)) { nv50_crc_get_entries(head, func, crc->src); crc->ctx_idx ^= 1; crc->entry_idx = 0; crc->ctx_changed = false; /* * Unfortunately when notifier contexts are changed during CRC * capture, we will inevitably lose the CRC entry for the * frame where the hardware actually latched onto the first * UPDATE. According to Nvidia's hardware engineers, there's * no workaround for this. * * Now, we could try to be smart here and calculate the number * of missed CRCs based on audit timestamps, but those were * removed starting with volta. Since we always flush our * updates back-to-back without waiting, we'll just be * optimistic and assume we always miss exactly one frame. */ DRM_DEV_DEBUG_KMS(head->base.base.dev->dev, "Notifier ctx flip for head-%d finished, lost CRC for frame %llu\n", head->base.index, crc->frame); crc->frame++; nv50_crc_reset_ctx(ctx); need_reschedule = true; } nv50_crc_get_entries(head, func, crc->src); if (need_reschedule) drm_vblank_work_schedule(&crc->flip_work, drm_crtc_vblank_count(crtc) + crc->flip_threshold - crc->entry_idx, true); out: spin_unlock(&crc->lock); } static void nv50_crc_wait_ctx_finished(struct nv50_head *head, const struct nv50_crc_func *func, struct nv50_crc_notifier_ctx *ctx) { struct drm_device *dev = head->base.base.dev; struct nouveau_drm *drm = nouveau_drm(dev); s64 ret; ret = nvif_msec(&drm->client.device, 50, if (func->ctx_finished(head, ctx)) break;); if (ret == -ETIMEDOUT) NV_ERROR(drm, "CRC notifier ctx for head %d not finished after 50ms\n", head->base.index); else if (ret) NV_ATOMIC(drm, "CRC notifier ctx for head-%d finished after %lldns\n", head->base.index, ret); } void nv50_crc_atomic_stop_reporting(struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); struct nv50_crc *crc = &head->crc; if (!asyh->clr.crc) continue; spin_lock_irq(&crc->lock); crc->src = NV50_CRC_SOURCE_NONE; spin_unlock_irq(&crc->lock); drm_crtc_vblank_put(crtc); drm_vblank_work_cancel_sync(&crc->flip_work); NV_ATOMIC(nouveau_drm(crtc->dev), "CRC reporting on vblank for head-%d disabled\n", head->base.index); /* CRC generation is still enabled in hw, we'll just report * any remaining CRC entries ourselves after it gets disabled * in hardware */ } } void nv50_crc_atomic_init_notifier_contexts(struct drm_atomic_state *state) { struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_crc *crc = &head->crc; int i; if (!asyh->set.crc) continue; crc->entry_idx = 0; crc->ctx_changed = false; for (i = 0; i < ARRAY_SIZE(crc->ctx); i++) nv50_crc_reset_ctx(&crc->ctx[i]); } } void nv50_crc_atomic_release_notifier_contexts(struct drm_atomic_state *state) { const struct nv50_crc_func *func = nv50_disp(state->dev)->core->func->crc; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_crc *crc = &head->crc; struct nv50_crc_notifier_ctx *ctx = &crc->ctx[crc->ctx_idx]; if (!asyh->clr.crc) continue; if (crc->ctx_changed) { nv50_crc_wait_ctx_finished(head, func, ctx); ctx = &crc->ctx[crc->ctx_idx ^ 1]; } nv50_crc_wait_ctx_finished(head, func, ctx); } } void nv50_crc_atomic_start_reporting(struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); struct nv50_crc *crc = &head->crc; u64 vbl_count; if (!asyh->set.crc) continue; drm_crtc_vblank_get(crtc); spin_lock_irq(&crc->lock); vbl_count = drm_crtc_vblank_count(crtc); crc->frame = vbl_count; crc->src = asyh->crc.src; drm_vblank_work_schedule(&crc->flip_work, vbl_count + crc->flip_threshold, true); spin_unlock_irq(&crc->lock); NV_ATOMIC(nouveau_drm(crtc->dev), "CRC reporting on vblank for head-%d enabled\n", head->base.index); } } int nv50_crc_atomic_check_head(struct nv50_head *head, struct nv50_head_atom *asyh, struct nv50_head_atom *armh) { struct nv50_atom *atom = nv50_atom(asyh->state.state); struct drm_device *dev = head->base.base.dev; struct nv50_disp *disp = nv50_disp(dev); bool changed = armh->crc.src != asyh->crc.src; if (!armh->crc.src && !asyh->crc.src) { asyh->set.crc = false; asyh->clr.crc = false; return 0; } /* While we don't care about entry tags, Volta+ hw always needs the * controlling wndw channel programmed to a wndw that's owned by our * head */ if (asyh->crc.src && disp->disp->object.oclass >= GV100_DISP && !(BIT(asyh->crc.wndw) & asyh->wndw.owned)) { if (!asyh->wndw.owned) { /* TODO: once we support flexible channel ownership, * we should write some code here to handle attempting * to "steal" a plane: e.g. take a plane that is * currently not-visible and owned by another head, * and reassign it to this head. If we fail to do so, * we shuld reject the mode outright as CRC capture * then becomes impossible. */ NV_ATOMIC(nouveau_drm(dev), "No available wndws for CRC readback\n"); return -EINVAL; } asyh->crc.wndw = ffs(asyh->wndw.owned) - 1; } if (drm_atomic_crtc_needs_modeset(&asyh->state) || changed || armh->crc.wndw != asyh->crc.wndw) { asyh->clr.crc = armh->crc.src && armh->state.active; asyh->set.crc = asyh->crc.src && asyh->state.active; if (changed) asyh->set.or |= armh->or.crc_raster != asyh->or.crc_raster; if (asyh->clr.crc && asyh->set.crc) atom->flush_disable = true; } else { asyh->set.crc = false; asyh->clr.crc = false; } return 0; } void nv50_crc_atomic_check_outp(struct nv50_atom *atom) { struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; int i; if (atom->flush_disable) return; for_each_oldnew_crtc_in_state(&atom->state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state); struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_outp_atom *outp_atom; struct nouveau_encoder *outp = nv50_real_outp(nv50_head_atom_get_encoder(armh)); struct drm_encoder *encoder = &outp->base.base; if (!asyh->clr.crc) continue; /* * Re-programming ORs can't be done in the same flush as * disabling CRCs */ list_for_each_entry(outp_atom, &atom->outp, head) { if (outp_atom->encoder == encoder) { if (outp_atom->set.mask) { atom->flush_disable = true; return; } else { break; } } } } } static enum nv50_crc_source_type nv50_crc_source_type(struct nouveau_encoder *outp, enum nv50_crc_source source) { struct dcb_output *dcbe = outp->dcb; switch (source) { case NV50_CRC_SOURCE_NONE: return NV50_CRC_SOURCE_TYPE_NONE; case NV50_CRC_SOURCE_RG: return NV50_CRC_SOURCE_TYPE_RG; default: break; } if (dcbe->location != DCB_LOC_ON_CHIP) return NV50_CRC_SOURCE_TYPE_PIOR; switch (dcbe->type) { case DCB_OUTPUT_DP: return NV50_CRC_SOURCE_TYPE_SF; case DCB_OUTPUT_ANALOG: return NV50_CRC_SOURCE_TYPE_DAC; default: return NV50_CRC_SOURCE_TYPE_SOR; } } void nv50_crc_atomic_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct drm_crtc *crtc = &head->base.base; struct drm_device *dev = crtc->dev; struct nv50_crc *crc = &head->crc; const struct nv50_crc_func *func = nv50_disp(dev)->core->func->crc; struct nouveau_encoder *outp = nv50_real_outp(nv50_head_atom_get_encoder(asyh)); func->set_src(head, outp->or, nv50_crc_source_type(outp, asyh->crc.src), &crc->ctx[crc->ctx_idx], asyh->crc.wndw); } void nv50_crc_atomic_clr(struct nv50_head *head) { const struct nv50_crc_func *func = nv50_disp(head->base.base.dev)->core->func->crc; func->set_src(head, 0, NV50_CRC_SOURCE_TYPE_NONE, NULL, 0); } static inline int nv50_crc_raster_type(enum nv50_crc_source source) { switch (source) { case NV50_CRC_SOURCE_NONE: case NV50_CRC_SOURCE_AUTO: case NV50_CRC_SOURCE_RG: case NV50_CRC_SOURCE_OUTP_ACTIVE: return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_ACTIVE_RASTER; case NV50_CRC_SOURCE_OUTP_COMPLETE: return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_COMPLETE_RASTER; case NV50_CRC_SOURCE_OUTP_INACTIVE: return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_NON_ACTIVE_RASTER; } return 0; } /* We handle mapping the memory for CRC notifiers ourselves, since each * notifier needs it's own handle */ static inline int nv50_crc_ctx_init(struct nv50_head *head, struct nvif_mmu *mmu, struct nv50_crc_notifier_ctx *ctx, size_t len, int idx) { struct nv50_core *core = nv50_disp(head->base.base.dev)->core; int ret; ret = nvif_mem_ctor_map(mmu, "kmsCrcNtfy", NVIF_MEM_VRAM, len, &ctx->mem); if (ret) return ret; ret = nvif_object_ctor(&core->chan.base.user, "kmsCrcNtfyCtxDma", NV50_DISP_HANDLE_CRC_CTX(head, idx), NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = ctx->mem.addr, .limit = ctx->mem.addr + ctx->mem.size - 1, }, sizeof(struct nv_dma_v0), &ctx->ntfy); if (ret) goto fail_fini; return 0; fail_fini: nvif_mem_dtor(&ctx->mem); return ret; } static inline void nv50_crc_ctx_fini(struct nv50_crc_notifier_ctx *ctx) { nvif_object_dtor(&ctx->ntfy); nvif_mem_dtor(&ctx->mem); } int nv50_crc_set_source(struct drm_crtc *crtc, const char *source_str) { struct drm_device *dev = crtc->dev; struct drm_atomic_state *state; struct drm_modeset_acquire_ctx ctx; struct nv50_head *head = nv50_head(crtc); struct nv50_crc *crc = &head->crc; const struct nv50_crc_func *func = nv50_disp(dev)->core->func->crc; struct nvif_mmu *mmu = &nouveau_drm(dev)->client.mmu; struct nv50_head_atom *asyh; struct drm_crtc_state *crtc_state; enum nv50_crc_source source; int ret = 0, ctx_flags = 0, i; ret = nv50_crc_parse_source(source_str, &source); if (ret) return ret; /* * Since we don't want the user to accidentally interrupt us as we're * disabling CRCs */ if (source) ctx_flags |= DRM_MODESET_ACQUIRE_INTERRUPTIBLE; drm_modeset_acquire_init(&ctx, ctx_flags); state = drm_atomic_state_alloc(dev); if (!state) { ret = -ENOMEM; goto out_acquire_fini; } state->acquire_ctx = &ctx; if (source) { for (i = 0; i < ARRAY_SIZE(head->crc.ctx); i++) { ret = nv50_crc_ctx_init(head, mmu, &crc->ctx[i], func->notifier_len, i); if (ret) goto out_ctx_fini; } } retry: crtc_state = drm_atomic_get_crtc_state(state, &head->base.base); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); if (ret == -EDEADLK) goto deadlock; else if (ret) goto out_drop_locks; } asyh = nv50_head_atom(crtc_state); asyh->crc.src = source; asyh->or.crc_raster = nv50_crc_raster_type(source); ret = drm_atomic_commit(state); if (ret == -EDEADLK) goto deadlock; else if (ret) goto out_drop_locks; if (!source) { /* * If the user specified a custom flip threshold through * debugfs, reset it */ crc->flip_threshold = func->flip_threshold; } out_drop_locks: drm_modeset_drop_locks(&ctx); out_ctx_fini: if (!source || ret) { for (i = 0; i < ARRAY_SIZE(crc->ctx); i++) nv50_crc_ctx_fini(&crc->ctx[i]); } drm_atomic_state_put(state); out_acquire_fini: drm_modeset_acquire_fini(&ctx); return ret; deadlock: drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } static int nv50_crc_debugfs_flip_threshold_get(struct seq_file *m, void *data) { struct nv50_head *head = m->private; struct drm_crtc *crtc = &head->base.base; struct nv50_crc *crc = &head->crc; int ret; ret = drm_modeset_lock_single_interruptible(&crtc->mutex); if (ret) return ret; seq_printf(m, "%d\n", crc->flip_threshold); drm_modeset_unlock(&crtc->mutex); return ret; } static int nv50_crc_debugfs_flip_threshold_open(struct inode *inode, struct file *file) { return single_open(file, nv50_crc_debugfs_flip_threshold_get, inode->i_private); } static ssize_t nv50_crc_debugfs_flip_threshold_set(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct nv50_head *head = m->private; struct nv50_head_atom *armh; struct drm_crtc *crtc = &head->base.base; struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct nv50_crc *crc = &head->crc; const struct nv50_crc_func *func = nv50_disp(crtc->dev)->core->func->crc; int value, ret; ret = kstrtoint_from_user(ubuf, len, 10, &value); if (ret) return ret; if (value > func->flip_threshold) return -EINVAL; else if (value == -1) value = func->flip_threshold; else if (value < -1) return -EINVAL; ret = drm_modeset_lock_single_interruptible(&crtc->mutex); if (ret) return ret; armh = nv50_head_atom(crtc->state); if (armh->crc.src) { ret = -EBUSY; goto out; } NV_DEBUG(drm, "Changing CRC flip threshold for next capture on head-%d to %d\n", head->base.index, value); crc->flip_threshold = value; ret = len; out: drm_modeset_unlock(&crtc->mutex); return ret; } static const struct file_operations nv50_crc_flip_threshold_fops = { .owner = THIS_MODULE, .open = nv50_crc_debugfs_flip_threshold_open, .read = seq_read, .write = nv50_crc_debugfs_flip_threshold_set, }; int nv50_head_crc_late_register(struct nv50_head *head) { struct drm_crtc *crtc = &head->base.base; const struct nv50_crc_func *func = nv50_disp(crtc->dev)->core->func->crc; struct dentry *root; if (!func || !crtc->debugfs_entry) return 0; root = debugfs_create_dir("nv_crc", crtc->debugfs_entry); debugfs_create_file("flip_threshold", 0644, root, head, &nv50_crc_flip_threshold_fops); return 0; } static inline void nv50_crc_init_head(struct nv50_disp *disp, const struct nv50_crc_func *func, struct nv50_head *head) { struct nv50_crc *crc = &head->crc; crc->flip_threshold = func->flip_threshold; spin_lock_init(&crc->lock); drm_vblank_work_init(&crc->flip_work, &head->base.base, nv50_crc_ctx_flip_work); } void nv50_crc_init(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); struct drm_crtc *crtc; const struct nv50_crc_func *func = disp->core->func->crc; if (!func) return; drm_for_each_crtc(crtc, dev) nv50_crc_init_head(disp, func, nv50_head(crtc)); }