/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "disp.h" #include "atom.h" #include "core.h" #include "head.h" #include "wndw.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nouveau_drv.h" #include "nouveau_dma.h" #include "nouveau_gem.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_fence.h" #include "nouveau_fbcon.h" #include /****************************************************************************** * Atomic state *****************************************************************************/ struct nv50_outp_atom { struct list_head head; struct drm_encoder *encoder; bool flush_disable; union nv50_outp_atom_mask { struct { bool ctrl:1; }; u8 mask; } set, clr; }; /****************************************************************************** * EVO channel *****************************************************************************/ static int nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, struct nv50_chan *chan) { struct nvif_sclass *sclass; int ret, i, n; chan->device = device; ret = n = nvif_object_sclass_get(disp, &sclass); if (ret < 0) return ret; while (oclass[0]) { for (i = 0; i < n; i++) { if (sclass[i].oclass == oclass[0]) { ret = nvif_object_init(disp, 0, oclass[0], data, size, &chan->user); if (ret == 0) nvif_object_map(&chan->user, NULL, 0); nvif_object_sclass_put(&sclass); return ret; } } oclass++; } nvif_object_sclass_put(&sclass); return -ENOSYS; } static void nv50_chan_destroy(struct nv50_chan *chan) { nvif_object_fini(&chan->user); } /****************************************************************************** * DMA EVO channel *****************************************************************************/ void nv50_dmac_destroy(struct nv50_dmac *dmac) { nvif_object_fini(&dmac->vram); nvif_object_fini(&dmac->sync); nv50_chan_destroy(&dmac->base); nvif_mem_fini(&dmac->push); } int nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf, struct nv50_dmac *dmac) { struct nouveau_cli *cli = (void *)device->object.client; struct nv50_disp_core_channel_dma_v0 *args = data; u8 type = NVIF_MEM_COHERENT; int ret; mutex_init(&dmac->lock); /* Pascal added support for 47-bit physical addresses, but some * parts of EVO still only accept 40-bit PAs. * * To avoid issues on systems with large amounts of RAM, and on * systems where an IOMMU maps pages at a high address, we need * to allocate push buffers in VRAM instead. * * This appears to match NVIDIA's behaviour on Pascal. */ if (device->info.family == NV_DEVICE_INFO_V0_PASCAL) type |= NVIF_MEM_VRAM; ret = nvif_mem_init_map(&cli->mmu, type, 0x1000, &dmac->push); if (ret) return ret; dmac->ptr = dmac->push.object.map.ptr; args->pushbuf = nvif_handle(&dmac->push.object); ret = nv50_chan_create(device, disp, oclass, head, data, size, &dmac->base); if (ret) return ret; if (!syncbuf) return 0; ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = syncbuf + 0x0000, .limit = syncbuf + 0x0fff, }, sizeof(struct nv_dma_v0), &dmac->sync); if (ret) return ret; ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = 0, .limit = device->info.ram_user - 1, }, sizeof(struct nv_dma_v0), &dmac->vram); if (ret) return ret; return ret; } /****************************************************************************** * EVO channel helpers *****************************************************************************/ static void evo_flush(struct nv50_dmac *dmac) { /* Push buffer fetches are not coherent with BAR1, we need to ensure * writes have been flushed right through to VRAM before writing PUT. */ if (dmac->push.type & NVIF_MEM_VRAM) { struct nvif_device *device = dmac->base.device; nvif_wr32(&device->object, 0x070000, 0x00000001); nvif_msec(device, 2000, if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) break; ); } } u32 * evo_wait(struct nv50_dmac *evoc, int nr) { struct nv50_dmac *dmac = evoc; struct nvif_device *device = dmac->base.device; u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4; mutex_lock(&dmac->lock); if (put + nr >= (PAGE_SIZE / 4) - 8) { dmac->ptr[put] = 0x20000000; evo_flush(dmac); nvif_wr32(&dmac->base.user, 0x0000, 0x00000000); if (nvif_msec(device, 2000, if (!nvif_rd32(&dmac->base.user, 0x0004)) break; ) < 0) { mutex_unlock(&dmac->lock); pr_err("nouveau: evo channel stalled\n"); return NULL; } put = 0; } return dmac->ptr + put; } void evo_kick(u32 *push, struct nv50_dmac *evoc) { struct nv50_dmac *dmac = evoc; evo_flush(dmac); nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2); mutex_unlock(&dmac->lock); } /****************************************************************************** * Output path helpers *****************************************************************************/ static void nv50_outp_release(struct nouveau_encoder *nv_encoder) { struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); struct { struct nv50_disp_mthd_v1 base; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_RELEASE, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); nv_encoder->or = -1; nv_encoder->link = 0; } static int nv50_outp_acquire(struct nouveau_encoder *nv_encoder) { struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); struct nv50_disp *disp = nv50_disp(drm->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_acquire_v0 info; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_ACQUIRE, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; int ret; ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); if (ret) { NV_ERROR(drm, "error acquiring output path: %d\n", ret); return ret; } nv_encoder->or = args.info.or; nv_encoder->link = args.info.link; return 0; } static int nv50_outp_atomic_check_view(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct drm_display_mode *native_mode) { struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; struct drm_display_mode *mode = &crtc_state->mode; struct drm_connector *connector = conn_state->connector; struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); struct nouveau_drm *drm = nouveau_drm(encoder->dev); NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); asyc->scaler.full = false; if (!native_mode) return 0; if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { switch (connector->connector_type) { case DRM_MODE_CONNECTOR_LVDS: case DRM_MODE_CONNECTOR_eDP: /* Don't force scaler for EDID modes with * same size as the native one (e.g. different * refresh rate) */ if (adjusted_mode->hdisplay == native_mode->hdisplay && adjusted_mode->vdisplay == native_mode->vdisplay && adjusted_mode->type & DRM_MODE_TYPE_DRIVER) break; mode = native_mode; asyc->scaler.full = true; break; default: break; } } else { mode = native_mode; } if (!drm_mode_equal(adjusted_mode, mode)) { drm_mode_copy(adjusted_mode, mode); crtc_state->mode_changed = true; } return 0; } static int nv50_outp_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct nouveau_connector *nv_connector = nouveau_connector(conn_state->connector); return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, nv_connector->native_mode); } /****************************************************************************** * DAC *****************************************************************************/ static void nv50_dac_disable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_core *core = nv50_disp(encoder->dev)->core; if (nv_encoder->crtc) core->func->dac->ctrl(core, nv_encoder->or, 0x00000000, NULL); nv_encoder->crtc = NULL; nv50_outp_release(nv_encoder); } static void nv50_dac_enable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); struct nv50_core *core = nv50_disp(encoder->dev)->core; nv50_outp_acquire(nv_encoder); core->func->dac->ctrl(core, nv_encoder->or, 1 << nv_crtc->index, asyh); asyh->or.depth = 0; nv_encoder->crtc = encoder->crtc; } static enum drm_connector_status nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_dac_load_v0 load; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_DAC_LOAD, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; int ret; args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval; if (args.load.data == 0) args.load.data = 340; ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); if (ret || !args.load.load) return connector_status_disconnected; return connector_status_connected; } static const struct drm_encoder_helper_funcs nv50_dac_help = { .atomic_check = nv50_outp_atomic_check, .enable = nv50_dac_enable, .disable = nv50_dac_disable, .detect = nv50_dac_detect }; static void nv50_dac_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs nv50_dac_func = { .destroy = nv50_dac_destroy, }; static int nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type = DRM_MODE_ENCODER_DAC; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); if (bus) nv_encoder->i2c = &bus->i2c; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_dac_help); drm_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Audio *****************************************************************************/ static void nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hda_eld_v0 eld; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), }; nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); } static void nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct nv50_disp *disp = nv50_disp(encoder->dev); struct __packed { struct { struct nv50_disp_mthd_v1 mthd; struct nv50_disp_sor_hda_eld_v0 eld; } base; u8 data[sizeof(nv_connector->base.eld)]; } args = { .base.mthd.version = 1, .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, .base.mthd.hasht = nv_encoder->dcb->hasht, .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), }; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_monitor_audio(nv_connector->edid)) return; memcpy(args.data, nv_connector->base.eld, sizeof(args.data)); nvif_mthd(&disp->disp->object, 0, &args, sizeof(args.base) + drm_eld_size(args.data)); } /****************************************************************************** * HDMI *****************************************************************************/ static void nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hdmi_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), }; nvif_mthd(&disp->disp->object, 0, &args, sizeof(args)); } static void nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hdmi_pwr_v0 pwr; u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */ } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), .pwr.state = 1, .pwr.rekey = 56, /* binary driver, and tegra, constant */ }; struct nouveau_connector *nv_connector; struct drm_hdmi_info *hdmi; u32 max_ac_packet; union hdmi_infoframe avi_frame; union hdmi_infoframe vendor_frame; bool high_tmds_clock_ratio = false, scrambling = false; u8 config; int ret; int size; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_hdmi_monitor(nv_connector->edid)) return; hdmi = &nv_connector->base.display_info.hdmi; ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi, &nv_connector->base, mode); if (!ret) { /* We have an AVI InfoFrame, populate it to the display */ args.pwr.avi_infoframe_length = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17); } ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi, &nv_connector->base, mode); if (!ret) { /* We have a Vendor InfoFrame, populate it to the display */ args.pwr.vendor_infoframe_length = hdmi_infoframe_pack(&vendor_frame, args.infoframes + args.pwr.avi_infoframe_length, 17); } max_ac_packet = mode->htotal - mode->hdisplay; max_ac_packet -= args.pwr.rekey; max_ac_packet -= 18; /* constant from tegra */ args.pwr.max_ac_packet = max_ac_packet / 32; if (hdmi->scdc.scrambling.supported) { high_tmds_clock_ratio = mode->clock > 340000; scrambling = high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates; } args.pwr.scdc = NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling | NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio; size = sizeof(args.base) + sizeof(args.pwr) + args.pwr.avi_infoframe_length + args.pwr.vendor_infoframe_length; nvif_mthd(&disp->disp->object, 0, &args, size); nv50_audio_enable(encoder, mode); /* If SCDC is supported by the downstream monitor, update * divider / scrambling settings to what we programmed above. */ if (!hdmi->scdc.scrambling.supported) return; ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config); if (ret < 0) { NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); return; } config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio; config |= SCDC_SCRAMBLING_ENABLE * scrambling; ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config); if (ret < 0) NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", config, ret); } /****************************************************************************** * MST *****************************************************************************/ #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) struct nv50_mstm { struct nouveau_encoder *outp; struct drm_dp_mst_topology_mgr mgr; struct nv50_msto *msto[4]; bool modified; bool disabled; int links; }; struct nv50_mstc { struct nv50_mstm *mstm; struct drm_dp_mst_port *port; struct drm_connector connector; struct drm_display_mode *native; struct edid *edid; }; struct nv50_msto { struct drm_encoder encoder; struct nv50_head *head; struct nv50_mstc *mstc; bool disabled; }; static struct drm_dp_payload * nv50_msto_payload(struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; int vcpi = mstc->port->vcpi.vcpi, i; WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock)); NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi); for (i = 0; i < mstm->mgr.max_payloads; i++) { struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n", mstm->outp->base.base.name, i, payload->vcpi, payload->start_slot, payload->num_slots); } for (i = 0; i < mstm->mgr.max_payloads; i++) { struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; if (payload->vcpi == vcpi) return payload; } return NULL; } static void nv50_msto_cleanup(struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; if (!msto->disabled) return; NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port); msto->mstc = NULL; msto->head = NULL; msto->disabled = false; } static void nv50_msto_prepare(struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI, .base.hasht = mstm->outp->dcb->hasht, .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) | (0x0100 << msto->head->base.index), }; mutex_lock(&mstm->mgr.payload_lock); NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); if (mstc->port->vcpi.vcpi > 0) { struct drm_dp_payload *payload = nv50_msto_payload(msto); if (payload) { args.vcpi.start_slot = payload->start_slot; args.vcpi.num_slots = payload->num_slots; args.vcpi.pbn = mstc->port->vcpi.pbn; args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn; } } NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n", msto->encoder.name, msto->head->base.base.name, args.vcpi.start_slot, args.vcpi.num_slots, args.vcpi.pbn, args.vcpi.aligned_pbn); nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args)); mutex_unlock(&mstm->mgr.payload_lock); } static int nv50_msto_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_atomic_state *state = crtc_state->state; struct drm_connector *connector = conn_state->connector; struct nv50_mstc *mstc = nv50_mstc(connector); struct nv50_mstm *mstm = mstc->mstm; struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); int slots; /* When restoring duplicated states, we need to make sure that the * bw remains the same and avoid recalculating it, as the connector's * bpc may have changed after the state was duplicated */ if (!state->duplicated) asyh->dp.pbn = drm_dp_calc_pbn_mode(crtc_state->adjusted_mode.clock, connector->display_info.bpc * 3); if (drm_atomic_crtc_needs_modeset(crtc_state)) { slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); if (slots < 0) return slots; asyh->dp.tu = slots; } return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, mstc->native); } static void nv50_msto_enable(struct drm_encoder *encoder) { struct nv50_head *head = nv50_head(encoder->crtc); struct nv50_head_atom *armh = nv50_head_atom(head->base.base.state); struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = NULL; struct nv50_mstm *mstm = NULL; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; u8 proto, depth; bool r; drm_connector_list_iter_begin(encoder->dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { if (connector->state->best_encoder == &msto->encoder) { mstc = nv50_mstc(connector); mstm = mstc->mstm; break; } } drm_connector_list_iter_end(&conn_iter); if (WARN_ON(!mstc)) return; r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, armh->dp.pbn, armh->dp.tu); if (!r) DRM_DEBUG_KMS("Failed to allocate VCPI\n"); if (!mstm->links++) nv50_outp_acquire(mstm->outp); if (mstm->outp->link & 1) proto = 0x8; else proto = 0x9; switch (mstc->connector.display_info.bpc) { case 6: depth = 0x2; break; case 8: depth = 0x5; break; case 10: default: depth = 0x6; break; } mstm->outp->update(mstm->outp, head->base.index, armh, proto, depth); msto->head = head; msto->mstc = mstc; mstm->modified = true; } static void nv50_msto_disable(struct drm_encoder *encoder) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port); mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); mstm->modified = true; if (!--mstm->links) mstm->disabled = true; msto->disabled = true; } static const struct drm_encoder_helper_funcs nv50_msto_help = { .disable = nv50_msto_disable, .enable = nv50_msto_enable, .atomic_check = nv50_msto_atomic_check, }; static void nv50_msto_destroy(struct drm_encoder *encoder) { struct nv50_msto *msto = nv50_msto(encoder); drm_encoder_cleanup(&msto->encoder); kfree(msto); } static const struct drm_encoder_funcs nv50_msto = { .destroy = nv50_msto_destroy, }; static int nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id, struct nv50_msto **pmsto) { struct nv50_msto *msto; int ret; if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL))) return -ENOMEM; ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id); if (ret) { kfree(*pmsto); *pmsto = NULL; return ret; } drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); msto->encoder.possible_crtcs = heads; return 0; } static struct drm_encoder * nv50_mstc_atomic_best_encoder(struct drm_connector *connector, struct drm_connector_state *connector_state) { struct nv50_head *head = nv50_head(connector_state->crtc); struct nv50_mstc *mstc = nv50_mstc(connector); return &mstc->mstm->msto[head->base.index]->encoder; } static struct drm_encoder * nv50_mstc_best_encoder(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); return &mstc->mstm->msto[0]->encoder; } static enum drm_mode_status nv50_mstc_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { return MODE_OK; } static int nv50_mstc_get_modes(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); int ret = 0; mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); drm_connector_update_edid_property(&mstc->connector, mstc->edid); if (mstc->edid) ret = drm_add_edid_modes(&mstc->connector, mstc->edid); if (!mstc->connector.display_info.bpc) mstc->connector.display_info.bpc = 8; if (mstc->native) drm_mode_destroy(mstc->connector.dev, mstc->native); mstc->native = nouveau_conn_native_mode(&mstc->connector); return ret; } static int nv50_mstc_atomic_check(struct drm_connector *connector, struct drm_atomic_state *state) { struct nv50_mstc *mstc = nv50_mstc(connector); struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; struct drm_connector_state *new_conn_state = drm_atomic_get_new_connector_state(state, connector); struct drm_connector_state *old_conn_state = drm_atomic_get_old_connector_state(state, connector); struct drm_crtc_state *crtc_state; struct drm_crtc *new_crtc = new_conn_state->crtc; if (!old_conn_state->crtc) return 0; /* We only want to free VCPI if this state disables the CRTC on this * connector */ if (new_crtc) { crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc); if (!crtc_state || !drm_atomic_crtc_needs_modeset(crtc_state) || crtc_state->enable) return 0; } return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port); } static const struct drm_connector_helper_funcs nv50_mstc_help = { .get_modes = nv50_mstc_get_modes, .mode_valid = nv50_mstc_mode_valid, .best_encoder = nv50_mstc_best_encoder, .atomic_best_encoder = nv50_mstc_atomic_best_encoder, .atomic_check = nv50_mstc_atomic_check, }; static enum drm_connector_status nv50_mstc_detect(struct drm_connector *connector, bool force) { struct nv50_mstc *mstc = nv50_mstc(connector); enum drm_connector_status conn_status; int ret; if (drm_connector_is_unregistered(connector)) return connector_status_disconnected; ret = pm_runtime_get_sync(connector->dev->dev); if (ret < 0 && ret != -EACCES) return connector_status_disconnected; conn_status = drm_dp_mst_detect_port(connector, mstc->port->mgr, mstc->port); pm_runtime_mark_last_busy(connector->dev->dev); pm_runtime_put_autosuspend(connector->dev->dev); return conn_status; } static void nv50_mstc_destroy(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); drm_connector_cleanup(&mstc->connector); drm_dp_mst_put_port_malloc(mstc->port); kfree(mstc); } static const struct drm_connector_funcs nv50_mstc = { .reset = nouveau_conn_reset, .detect = nv50_mstc_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = nv50_mstc_destroy, .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, .atomic_destroy_state = nouveau_conn_atomic_destroy_state, .atomic_set_property = nouveau_conn_atomic_set_property, .atomic_get_property = nouveau_conn_atomic_get_property, }; static int nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, const char *path, struct nv50_mstc **pmstc) { struct drm_device *dev = mstm->outp->base.base.dev; struct nv50_mstc *mstc; int ret, i; if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) return -ENOMEM; mstc->mstm = mstm; mstc->port = port; ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, DRM_MODE_CONNECTOR_DisplayPort); if (ret) { kfree(*pmstc); *pmstc = NULL; return ret; } drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); mstc->connector.funcs->reset(&mstc->connector); nouveau_conn_attach_properties(&mstc->connector); for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto[i]; i++) drm_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder); drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); drm_connector_set_path_property(&mstc->connector, path); drm_dp_mst_get_port_malloc(port); return 0; } static void nv50_mstm_cleanup(struct nv50_mstm *mstm) { struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); struct drm_encoder *encoder; int ret; NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); ret = drm_dp_check_act_status(&mstm->mgr); ret = drm_dp_update_payload_part2(&mstm->mgr); drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm) nv50_msto_cleanup(msto); } } mstm->modified = false; } static void nv50_mstm_prepare(struct nv50_mstm *mstm) { struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); struct drm_encoder *encoder; int ret; NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); ret = drm_dp_update_payload_part1(&mstm->mgr); drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm) nv50_msto_prepare(msto); } } if (mstm->disabled) { if (!mstm->links) nv50_outp_release(mstm->outp); mstm->disabled = false; } } static void nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr, struct drm_connector *connector) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nv50_mstc *mstc = nv50_mstc(connector); drm_connector_unregister(&mstc->connector); drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector); drm_connector_put(&mstc->connector); } static void nv50_mstm_register_connector(struct drm_connector *connector) { struct nouveau_drm *drm = nouveau_drm(connector->dev); drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector); drm_connector_register(connector); } static struct drm_connector * nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, const char *path) { struct nv50_mstm *mstm = nv50_mstm(mgr); struct nv50_mstc *mstc; int ret; ret = nv50_mstc_new(mstm, port, path, &mstc); if (ret) return NULL; return &mstc->connector; } static const struct drm_dp_mst_topology_cbs nv50_mstm = { .add_connector = nv50_mstm_add_connector, .register_connector = nv50_mstm_register_connector, .destroy_connector = nv50_mstm_destroy_connector, }; void nv50_mstm_service(struct nv50_mstm *mstm) { struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL; bool handled = true; int ret; u8 esi[8] = {}; if (!aux) return; while (handled) { ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); if (ret != 8) { drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); return; } drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled); if (!handled) break; drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3); } } void nv50_mstm_remove(struct nv50_mstm *mstm) { if (mstm) drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); } static int nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state) { struct nouveau_encoder *outp = mstm->outp; struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_dp_mst_link_v0 mst; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK, .base.hasht = outp->dcb->hasht, .base.hashm = outp->dcb->hashm, .mst.state = state, }; struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev); struct nvif_object *disp = &drm->display->disp.object; int ret; if (dpcd >= 0x12) { /* Even if we're enabling MST, start with disabling the * branching unit to clear any sink-side MST topology state * that wasn't set by us */ ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0); if (ret < 0) return ret; if (state) { /* Now, start initializing */ ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, DP_MST_EN); if (ret < 0) return ret; } } return nvif_mthd(disp, 0, &args, sizeof(args)); } int nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow) { struct drm_dp_aux *aux; int ret; bool old_state, new_state; u8 mstm_ctrl; if (!mstm) return 0; mutex_lock(&mstm->mgr.lock); old_state = mstm->mgr.mst_state; new_state = old_state; aux = mstm->mgr.aux; if (old_state) { /* Just check that the MST hub is still as we expect it */ ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl); if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) { DRM_DEBUG_KMS("Hub gone, disabling MST topology\n"); new_state = false; } } else if (dpcd[0] >= 0x12) { ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]); if (ret < 0) goto probe_error; if (!(dpcd[1] & DP_MST_CAP)) dpcd[0] = 0x11; else new_state = allow; } if (new_state == old_state) { mutex_unlock(&mstm->mgr.lock); return new_state; } ret = nv50_mstm_enable(mstm, dpcd[0], new_state); if (ret) goto probe_error; mutex_unlock(&mstm->mgr.lock); ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state); if (ret) return nv50_mstm_enable(mstm, dpcd[0], 0); return new_state; probe_error: mutex_unlock(&mstm->mgr.lock); return ret; } static void nv50_mstm_fini(struct nv50_mstm *mstm) { if (mstm && mstm->mgr.mst_state) drm_dp_mst_topology_mgr_suspend(&mstm->mgr); } static void nv50_mstm_init(struct nv50_mstm *mstm) { int ret; if (!mstm || !mstm->mgr.mst_state) return; ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr); if (ret == -1) { drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); drm_kms_helper_hotplug_event(mstm->mgr.dev); } } static void nv50_mstm_del(struct nv50_mstm **pmstm) { struct nv50_mstm *mstm = *pmstm; if (mstm) { drm_dp_mst_topology_mgr_destroy(&mstm->mgr); kfree(*pmstm); *pmstm = NULL; } } static int nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, int conn_base_id, struct nv50_mstm **pmstm) { const int max_payloads = hweight8(outp->dcb->heads); struct drm_device *dev = outp->base.base.dev; struct nv50_mstm *mstm; int ret, i; u8 dpcd; /* This is a workaround for some monitors not functioning * correctly in MST mode on initial module load. I think * some bad interaction with the VBIOS may be responsible. * * A good ol' off and on again seems to work here ;) */ ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd); if (ret >= 0 && dpcd >= 0x12) drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) return -ENOMEM; mstm->outp = outp; mstm->mgr.cbs = &nv50_mstm; ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, max_payloads, conn_base_id); if (ret) return ret; for (i = 0; i < max_payloads; i++) { ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name, i, &mstm->msto[i]); if (ret) return ret; } return 0; } /****************************************************************************** * SOR *****************************************************************************/ static void nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, struct nv50_head_atom *asyh, u8 proto, u8 depth) { struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); struct nv50_core *core = disp->core; if (!asyh) { nv_encoder->ctrl &= ~BIT(head); if (!(nv_encoder->ctrl & 0x0000000f)) nv_encoder->ctrl = 0; } else { nv_encoder->ctrl |= proto << 8; nv_encoder->ctrl |= BIT(head); asyh->or.depth = depth; } core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh); } static void nv50_sor_disable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); nv_encoder->crtc = NULL; if (nv_crtc) { struct nvkm_i2c_aux *aux = nv_encoder->aux; u8 pwr; if (aux) { int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1); if (ret == 0) { pwr &= ~DP_SET_POWER_MASK; pwr |= DP_SET_POWER_D3; nvkm_wraux(aux, DP_SET_POWER, &pwr, 1); } } nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0); nv50_audio_disable(encoder, nv_crtc); nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc); nv50_outp_release(nv_encoder); } } static void nv50_sor_enable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); struct drm_display_mode *mode = &asyh->state.adjusted_mode; struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_lvds_script_v0 lvds; } lvds = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; struct nv50_disp *disp = nv50_disp(encoder->dev); struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_connector *nv_connector; struct nvbios *bios = &drm->vbios; u8 proto = 0xf; u8 depth = 0x0; nv_connector = nouveau_encoder_connector_get(nv_encoder); nv_encoder->crtc = encoder->crtc; nv50_outp_acquire(nv_encoder); switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: if (nv_encoder->link & 1) { proto = 0x1; /* Only enable dual-link if: * - Need to (i.e. rate > 165MHz) * - DCB says we can * - Not an HDMI monitor, since there's no dual-link * on HDMI. */ if (mode->clock >= 165000 && nv_encoder->dcb->duallink_possible && !drm_detect_hdmi_monitor(nv_connector->edid)) proto |= 0x4; } else { proto = 0x2; } nv50_hdmi_enable(&nv_encoder->base.base, mode); break; case DCB_OUTPUT_LVDS: proto = 0x0; if (bios->fp_no_ddc) { if (bios->fp.dual_link) lvds.lvds.script |= 0x0100; if (bios->fp.if_is_24bit) lvds.lvds.script |= 0x0200; } else { if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { if (((u8 *)nv_connector->edid)[121] == 2) lvds.lvds.script |= 0x0100; } else if (mode->clock >= bios->fp.duallink_transition_clk) { lvds.lvds.script |= 0x0100; } if (lvds.lvds.script & 0x0100) { if (bios->fp.strapless_is_24bit & 2) lvds.lvds.script |= 0x0200; } else { if (bios->fp.strapless_is_24bit & 1) lvds.lvds.script |= 0x0200; } if (nv_connector->base.display_info.bpc == 8) lvds.lvds.script |= 0x0200; } nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds)); break; case DCB_OUTPUT_DP: if (nv_connector->base.display_info.bpc == 6) depth = 0x2; else if (nv_connector->base.display_info.bpc == 8) depth = 0x5; else depth = 0x6; if (nv_encoder->link & 1) proto = 0x8; else proto = 0x9; nv50_audio_enable(encoder, mode); break; default: BUG(); break; } nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); } static const struct drm_encoder_helper_funcs nv50_sor_help = { .atomic_check = nv50_outp_atomic_check, .enable = nv50_sor_enable, .disable = nv50_sor_disable, }; static void nv50_sor_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nv50_mstm_del(&nv_encoder->dp.mstm); drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs nv50_sor_func = { .destroy = nv50_sor_destroy, }; static int nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_connector *nv_connector = nouveau_connector(connector); struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_bios *bios = nvxx_bios(&drm->client.device); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; u8 ver, hdr, cnt, len; u32 data; int type, ret; switch (dcbe->type) { case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: default: type = DRM_MODE_ENCODER_TMDS; break; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->update = nv50_sor_update; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_sor_help); drm_connector_attach_encoder(connector, encoder); if (dcbe->type == DCB_OUTPUT_DP) { struct nv50_disp *disp = nv50_disp(encoder->dev); struct nvkm_i2c_aux *aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); if (aux) { if (disp->disp->object.oclass < GF110_DISP) { /* HW has no support for address-only * transactions, so we're required to * use custom I2C-over-AUX code. */ nv_encoder->i2c = &aux->i2c; } else { nv_encoder->i2c = &nv_connector->aux.ddc; } nv_encoder->aux = aux; } if ((data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len)) && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04)) { ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16, nv_connector->base.base.id, &nv_encoder->dp.mstm); if (ret) return ret; } } else { struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); if (bus) nv_encoder->i2c = &bus->i2c; } return 0; } /****************************************************************************** * PIOR *****************************************************************************/ static int nv50_pior_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); if (ret) return ret; crtc_state->adjusted_mode.clock *= 2; return 0; } static void nv50_pior_disable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_core *core = nv50_disp(encoder->dev)->core; if (nv_encoder->crtc) core->func->pior->ctrl(core, nv_encoder->or, 0x00000000, NULL); nv_encoder->crtc = NULL; nv50_outp_release(nv_encoder); } static void nv50_pior_enable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state); struct nv50_core *core = nv50_disp(encoder->dev)->core; u8 owner = 1 << nv_crtc->index; u8 proto; nv50_outp_acquire(nv_encoder); nv_connector = nouveau_encoder_connector_get(nv_encoder); switch (nv_connector->base.display_info.bpc) { case 10: asyh->or.depth = 0x6; break; case 8: asyh->or.depth = 0x5; break; case 6: asyh->or.depth = 0x2; break; default: asyh->or.depth = 0x0; break; } switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: proto = 0x0; break; default: BUG(); break; } core->func->pior->ctrl(core, nv_encoder->or, (proto << 8) | owner, asyh); nv_encoder->crtc = encoder->crtc; } static const struct drm_encoder_helper_funcs nv50_pior_help = { .atomic_check = nv50_pior_atomic_check, .enable = nv50_pior_enable, .disable = nv50_pior_disable, }; static void nv50_pior_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs nv50_pior_func = { .destroy = nv50_pior_destroy, }; static int nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus = NULL; struct nvkm_i2c_aux *aux = NULL; struct i2c_adapter *ddc; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type; switch (dcbe->type) { case DCB_OUTPUT_TMDS: bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev)); ddc = bus ? &bus->i2c : NULL; type = DRM_MODE_ENCODER_TMDS; break; case DCB_OUTPUT_DP: aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev)); ddc = aux ? &aux->i2c : NULL; type = DRM_MODE_ENCODER_TMDS; break; default: return -ENODEV; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->i2c = ddc; nv_encoder->aux = aux; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_pior_help); drm_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Atomic *****************************************************************************/ static void nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) { struct nouveau_drm *drm = nouveau_drm(state->dev); struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_core *core = disp->core; struct nv50_mstm *mstm; struct drm_encoder *encoder; NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); drm_for_each_encoder(encoder, drm->dev) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { mstm = nouveau_encoder(encoder)->dp.mstm; if (mstm && mstm->modified) nv50_mstm_prepare(mstm); } } core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); core->func->update(core, interlock, true); if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, disp->core->chan.base.device)) NV_ERROR(drm, "core notifier timeout\n"); drm_for_each_encoder(encoder, drm->dev) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { mstm = nouveau_encoder(encoder)->dp.mstm; if (mstm && mstm->modified) nv50_mstm_cleanup(mstm); } } } static void nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) { struct drm_plane_state *new_plane_state; struct drm_plane *plane; int i; for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw *wndw = nv50_wndw(plane); if (interlock[wndw->interlock.type] & wndw->interlock.data) { if (wndw->func->update) wndw->func->update(wndw, interlock); } } } static void nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_crtc_state *new_crtc_state, *old_crtc_state; struct drm_crtc *crtc; struct drm_plane_state *new_plane_state; struct drm_plane *plane; struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nv50_atom *atom = nv50_atom(state); struct nv50_outp_atom *outp, *outt; u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; int i; NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); drm_atomic_helper_wait_for_fences(dev, state, false); drm_atomic_helper_wait_for_dependencies(state); drm_atomic_helper_update_legacy_modeset_state(dev, state); if (atom->lock_core) mutex_lock(&disp->mutex); /* Disable head(s). */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, asyh->clr.mask, asyh->set.mask); if (old_crtc_state->active && !new_crtc_state->active) drm_crtc_vblank_off(crtc); if (asyh->clr.mask) { nv50_head_flush_clr(head, asyh, atom->flush_disable); interlock[NV50_DISP_INTERLOCK_CORE] |= 1; } } /* Disable plane(s). */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, asyw->clr.mask, asyw->set.mask); if (!asyw->clr.mask) continue; nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); } /* Disable output path(s). */ list_for_each_entry(outp, &atom->outp, head) { const struct drm_encoder_helper_funcs *help; struct drm_encoder *encoder; encoder = outp->encoder; help = encoder->helper_private; NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, outp->clr.mask, outp->set.mask); if (outp->clr.mask) { help->disable(encoder); interlock[NV50_DISP_INTERLOCK_CORE] |= 1; if (outp->flush_disable) { nv50_disp_atomic_commit_wndw(state, interlock); nv50_disp_atomic_commit_core(state, interlock); memset(interlock, 0x00, sizeof(interlock)); } } } /* Flush disable. */ if (interlock[NV50_DISP_INTERLOCK_CORE]) { if (atom->flush_disable) { nv50_disp_atomic_commit_wndw(state, interlock); nv50_disp_atomic_commit_core(state, interlock); memset(interlock, 0x00, sizeof(interlock)); } } /* Update output path(s). */ list_for_each_entry_safe(outp, outt, &atom->outp, head) { const struct drm_encoder_helper_funcs *help; struct drm_encoder *encoder; encoder = outp->encoder; help = encoder->helper_private; NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, outp->set.mask, outp->clr.mask); if (outp->set.mask) { help->enable(encoder); interlock[NV50_DISP_INTERLOCK_CORE] = 1; } list_del(&outp->head); kfree(outp); } /* Update head(s). */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, asyh->set.mask, asyh->clr.mask); if (asyh->set.mask) { nv50_head_flush_set(head, asyh); interlock[NV50_DISP_INTERLOCK_CORE] = 1; } if (new_crtc_state->active) { if (!old_crtc_state->active) drm_crtc_vblank_on(crtc); if (new_crtc_state->event) drm_crtc_vblank_get(crtc); } } /* Update plane(s). */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, asyw->set.mask, asyw->clr.mask); if ( !asyw->set.mask && (!asyw->clr.mask || atom->flush_disable)) continue; nv50_wndw_flush_set(wndw, interlock, asyw); } /* Flush update. */ nv50_disp_atomic_commit_wndw(state, interlock); if (interlock[NV50_DISP_INTERLOCK_CORE]) { if (interlock[NV50_DISP_INTERLOCK_BASE] || interlock[NV50_DISP_INTERLOCK_OVLY] || interlock[NV50_DISP_INTERLOCK_WNDW] || !atom->state.legacy_cursor_update) nv50_disp_atomic_commit_core(state, interlock); else disp->core->func->update(disp->core, interlock, false); } if (atom->lock_core) mutex_unlock(&disp->mutex); /* Wait for HW to signal completion. */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); int ret = nv50_wndw_wait_armed(wndw, asyw); if (ret) NV_ERROR(drm, "%s: timeout\n", plane->name); } for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->event) { unsigned long flags; /* Get correct count/ts if racing with vblank irq */ if (new_crtc_state->active) drm_crtc_accurate_vblank_count(crtc); spin_lock_irqsave(&crtc->dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, new_crtc_state->event); spin_unlock_irqrestore(&crtc->dev->event_lock, flags); new_crtc_state->event = NULL; if (new_crtc_state->active) drm_crtc_vblank_put(crtc); } } drm_atomic_helper_commit_hw_done(state); drm_atomic_helper_cleanup_planes(dev, state); drm_atomic_helper_commit_cleanup_done(state); drm_atomic_state_put(state); } static void nv50_disp_atomic_commit_work(struct work_struct *work) { struct drm_atomic_state *state = container_of(work, typeof(*state), commit_work); nv50_disp_atomic_commit_tail(state); } static int nv50_disp_atomic_commit(struct drm_device *dev, struct drm_atomic_state *state, bool nonblock) { struct nouveau_drm *drm = nouveau_drm(dev); struct drm_plane_state *new_plane_state; struct drm_plane *plane; struct drm_crtc *crtc; bool active = false; int ret, i; ret = pm_runtime_get_sync(dev->dev); if (ret < 0 && ret != -EACCES) return ret; ret = drm_atomic_helper_setup_commit(state, nonblock); if (ret) goto done; INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); ret = drm_atomic_helper_prepare_planes(dev, state); if (ret) goto done; if (!nonblock) { ret = drm_atomic_helper_wait_for_fences(dev, state, true); if (ret) goto err_cleanup; } ret = drm_atomic_helper_swap_state(state, true); if (ret) goto err_cleanup; for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); if (asyw->set.image) nv50_wndw_ntfy_enable(wndw, asyw); } drm_atomic_state_get(state); if (nonblock) queue_work(system_unbound_wq, &state->commit_work); else nv50_disp_atomic_commit_tail(state); drm_for_each_crtc(crtc, dev) { if (crtc->state->active) { if (!drm->have_disp_power_ref) { drm->have_disp_power_ref = true; return 0; } active = true; break; } } if (!active && drm->have_disp_power_ref) { pm_runtime_put_autosuspend(dev->dev); drm->have_disp_power_ref = false; } err_cleanup: if (ret) drm_atomic_helper_cleanup_planes(dev, state); done: pm_runtime_put_autosuspend(dev->dev); return ret; } static struct nv50_outp_atom * nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) { struct nv50_outp_atom *outp; list_for_each_entry(outp, &atom->outp, head) { if (outp->encoder == encoder) return outp; } outp = kzalloc(sizeof(*outp), GFP_KERNEL); if (!outp) return ERR_PTR(-ENOMEM); list_add(&outp->head, &atom->outp); outp->encoder = encoder; return outp; } static int nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, struct drm_connector_state *old_connector_state) { struct drm_encoder *encoder = old_connector_state->best_encoder; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_crtc *crtc; struct nv50_outp_atom *outp; if (!(crtc = old_connector_state->crtc)) return 0; old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { outp = nv50_disp_outp_atomic_add(atom, encoder); if (IS_ERR(outp)) return PTR_ERR(outp); if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { outp->flush_disable = true; atom->flush_disable = true; } outp->clr.ctrl = true; atom->lock_core = true; } return 0; } static int nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, struct drm_connector_state *connector_state) { struct drm_encoder *encoder = connector_state->best_encoder; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; struct nv50_outp_atom *outp; if (!(crtc = connector_state->crtc)) return 0; new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { outp = nv50_disp_outp_atomic_add(atom, encoder); if (IS_ERR(outp)) return PTR_ERR(outp); outp->set.ctrl = true; atom->lock_core = true; } return 0; } static int nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); struct drm_connector_state *old_connector_state, *new_connector_state; struct drm_connector *connector; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; int ret, i; /* We need to handle colour management on a per-plane basis. */ for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->color_mgmt_changed) { ret = drm_atomic_add_affected_planes(state, crtc); if (ret) return ret; } } ret = drm_atomic_helper_check(dev, state); if (ret) return ret; for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); if (ret) return ret; ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); if (ret) return ret; } ret = drm_dp_mst_atomic_check(state); if (ret) return ret; return 0; } static void nv50_disp_atomic_state_clear(struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); struct nv50_outp_atom *outp, *outt; list_for_each_entry_safe(outp, outt, &atom->outp, head) { list_del(&outp->head); kfree(outp); } drm_atomic_state_default_clear(state); } static void nv50_disp_atomic_state_free(struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); drm_atomic_state_default_release(&atom->state); kfree(atom); } static struct drm_atomic_state * nv50_disp_atomic_state_alloc(struct drm_device *dev) { struct nv50_atom *atom; if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || drm_atomic_state_init(dev, &atom->state) < 0) { kfree(atom); return NULL; } INIT_LIST_HEAD(&atom->outp); return &atom->state; } static const struct drm_mode_config_funcs nv50_disp_func = { .fb_create = nouveau_user_framebuffer_create, .output_poll_changed = nouveau_fbcon_output_poll_changed, .atomic_check = nv50_disp_atomic_check, .atomic_commit = nv50_disp_atomic_commit, .atomic_state_alloc = nv50_disp_atomic_state_alloc, .atomic_state_clear = nv50_disp_atomic_state_clear, .atomic_state_free = nv50_disp_atomic_state_free, }; /****************************************************************************** * Init *****************************************************************************/ static void nv50_display_fini(struct drm_device *dev, bool suspend) { struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; struct drm_plane *plane; drm_for_each_plane(plane, dev) { struct nv50_wndw *wndw = nv50_wndw(plane); if (plane->funcs != &nv50_wndw) continue; nv50_wndw_fini(wndw); } list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { nv_encoder = nouveau_encoder(encoder); nv50_mstm_fini(nv_encoder->dp.mstm); } } } static int nv50_display_init(struct drm_device *dev, bool resume, bool runtime) { struct nv50_core *core = nv50_disp(dev)->core; struct drm_encoder *encoder; struct drm_plane *plane; core->func->init(core); list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nv50_mstm_init(nv_encoder->dp.mstm); } } drm_for_each_plane(plane, dev) { struct nv50_wndw *wndw = nv50_wndw(plane); if (plane->funcs != &nv50_wndw) continue; nv50_wndw_init(wndw); } return 0; } static void nv50_display_destroy(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); nv50_core_del(&disp->core); nouveau_bo_unmap(disp->sync); if (disp->sync) nouveau_bo_unpin(disp->sync); nouveau_bo_ref(NULL, &disp->sync); nouveau_display(dev)->priv = NULL; kfree(disp); } int nv50_display_create(struct drm_device *dev) { struct nvif_device *device = &nouveau_drm(dev)->client.device; struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_table *dcb = &drm->vbios.dcb; struct drm_connector *connector, *tmp; struct nv50_disp *disp; struct dcb_output *dcbe; int crtcs, ret, i; disp = kzalloc(sizeof(*disp), GFP_KERNEL); if (!disp) return -ENOMEM; mutex_init(&disp->mutex); nouveau_display(dev)->priv = disp; nouveau_display(dev)->dtor = nv50_display_destroy; nouveau_display(dev)->init = nv50_display_init; nouveau_display(dev)->fini = nv50_display_fini; disp->disp = &nouveau_display(dev)->disp; dev->mode_config.funcs = &nv50_disp_func; dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; /* small shared memory area we use for notifiers and semaphores */ ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, NULL, &disp->sync); if (!ret) { ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true); if (!ret) { ret = nouveau_bo_map(disp->sync); if (ret) nouveau_bo_unpin(disp->sync); } if (ret) nouveau_bo_ref(NULL, &disp->sync); } if (ret) goto out; /* allocate master evo channel */ ret = nv50_core_new(drm, &disp->core); if (ret) goto out; /* create crtc objects to represent the hw heads */ if (disp->disp->object.oclass >= GV100_DISP) crtcs = nvif_rd32(&device->object, 0x610060) & 0xff; else if (disp->disp->object.oclass >= GF110_DISP) crtcs = nvif_rd32(&device->object, 0x612004) & 0xf; else crtcs = 0x3; for (i = 0; i < fls(crtcs); i++) { if (!(crtcs & (1 << i))) continue; ret = nv50_head_create(dev, i); if (ret) goto out; } /* create encoder/connector objects based on VBIOS DCB table */ for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { connector = nouveau_connector_create(dev, dcbe); if (IS_ERR(connector)) continue; if (dcbe->location == DCB_LOC_ON_CHIP) { switch (dcbe->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_LVDS: case DCB_OUTPUT_DP: ret = nv50_sor_create(connector, dcbe); break; case DCB_OUTPUT_ANALOG: ret = nv50_dac_create(connector, dcbe); break; default: ret = -ENODEV; break; } } else { ret = nv50_pior_create(connector, dcbe); } if (ret) { NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", dcbe->location, dcbe->type, ffs(dcbe->or) - 1, ret); ret = 0; } } /* cull any connectors we created that don't have an encoder */ list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (connector->encoder_ids[0]) continue; NV_WARN(drm, "%s has no encoders, removing\n", connector->name); connector->funcs->destroy(connector); } /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ dev->vblank_disable_immediate = true; out: if (ret) nv50_display_destroy(dev); return ret; }