/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "nouveau_dmem.h" #include "nouveau_drv.h" #include "nouveau_chan.h" #include "nouveau_dma.h" #include "nouveau_mem.h" #include "nouveau_bo.h" #include #include #include #include #include #include /* * FIXME: this is ugly right now we are using TTM to allocate vram and we pin * it in vram while in use. We likely want to overhaul memory management for * nouveau to be more page like (not necessarily with system page size but a * bigger page size) at lowest level and have some shim layer on top that would * provide the same functionality as TTM. */ #define DMEM_CHUNK_SIZE (2UL << 20) #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT) struct nouveau_migrate; enum nouveau_aper { NOUVEAU_APER_VIRT, NOUVEAU_APER_VRAM, NOUVEAU_APER_HOST, }; typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages, enum nouveau_aper, u64 dst_addr, enum nouveau_aper, u64 src_addr); struct nouveau_dmem_chunk { struct list_head list; struct nouveau_bo *bo; struct nouveau_drm *drm; unsigned long pfn_first; unsigned long callocated; unsigned long bitmap[BITS_TO_LONGS(DMEM_CHUNK_NPAGES)]; spinlock_t lock; }; struct nouveau_dmem_migrate { nouveau_migrate_copy_t copy_func; struct nouveau_channel *chan; }; struct nouveau_dmem { struct hmm_devmem *devmem; struct nouveau_dmem_migrate migrate; struct list_head chunk_free; struct list_head chunk_full; struct list_head chunk_empty; struct mutex mutex; }; struct nouveau_dmem_fault { struct nouveau_drm *drm; struct nouveau_fence *fence; dma_addr_t *dma; unsigned long npages; }; struct nouveau_migrate { struct vm_area_struct *vma; struct nouveau_drm *drm; struct nouveau_fence *fence; unsigned long npages; dma_addr_t *dma; unsigned long dma_nr; }; static void nouveau_dmem_free(struct hmm_devmem *devmem, struct page *page) { struct nouveau_dmem_chunk *chunk; unsigned long idx; chunk = (void *)hmm_devmem_page_get_drvdata(page); idx = page_to_pfn(page) - chunk->pfn_first; /* * FIXME: * * This is really a bad example, we need to overhaul nouveau memory * management to be more page focus and allow lighter locking scheme * to be use in the process. */ spin_lock(&chunk->lock); clear_bit(idx, chunk->bitmap); WARN_ON(!chunk->callocated); chunk->callocated--; /* * FIXME when chunk->callocated reach 0 we should add the chunk to * a reclaim list so that it can be freed in case of memory pressure. */ spin_unlock(&chunk->lock); } static void nouveau_dmem_fault_alloc_and_copy(struct vm_area_struct *vma, const unsigned long *src_pfns, unsigned long *dst_pfns, unsigned long start, unsigned long end, void *private) { struct nouveau_dmem_fault *fault = private; struct nouveau_drm *drm = fault->drm; struct device *dev = drm->dev->dev; unsigned long addr, i, npages = 0; nouveau_migrate_copy_t copy; int ret; /* First allocate new memory */ for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) { struct page *dpage, *spage; dst_pfns[i] = 0; spage = migrate_pfn_to_page(src_pfns[i]); if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) continue; dpage = hmm_vma_alloc_locked_page(vma, addr); if (!dpage) { dst_pfns[i] = MIGRATE_PFN_ERROR; continue; } dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; npages++; } /* Allocate storage for DMA addresses, so we can unmap later. */ fault->dma = kmalloc(sizeof(*fault->dma) * npages, GFP_KERNEL); if (!fault->dma) goto error; /* Copy things over */ copy = drm->dmem->migrate.copy_func; for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) { struct nouveau_dmem_chunk *chunk; struct page *spage, *dpage; u64 src_addr, dst_addr; dpage = migrate_pfn_to_page(dst_pfns[i]); if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR) continue; spage = migrate_pfn_to_page(src_pfns[i]); if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) { dst_pfns[i] = MIGRATE_PFN_ERROR; __free_page(dpage); continue; } fault->dma[fault->npages] = dma_map_page_attrs(dev, dpage, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(dev, fault->dma[fault->npages])) { dst_pfns[i] = MIGRATE_PFN_ERROR; __free_page(dpage); continue; } dst_addr = fault->dma[fault->npages++]; chunk = (void *)hmm_devmem_page_get_drvdata(spage); src_addr = page_to_pfn(spage) - chunk->pfn_first; src_addr = (src_addr << PAGE_SHIFT) + chunk->bo->bo.offset; ret = copy(drm, 1, NOUVEAU_APER_HOST, dst_addr, NOUVEAU_APER_VRAM, src_addr); if (ret) { dst_pfns[i] = MIGRATE_PFN_ERROR; __free_page(dpage); continue; } } nouveau_fence_new(drm->dmem->migrate.chan, false, &fault->fence); return; error: for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) { struct page *page; if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR) continue; page = migrate_pfn_to_page(dst_pfns[i]); dst_pfns[i] = MIGRATE_PFN_ERROR; if (page == NULL) continue; __free_page(page); } } void nouveau_dmem_fault_finalize_and_map(struct vm_area_struct *vma, const unsigned long *src_pfns, const unsigned long *dst_pfns, unsigned long start, unsigned long end, void *private) { struct nouveau_dmem_fault *fault = private; struct nouveau_drm *drm = fault->drm; if (fault->fence) { nouveau_fence_wait(fault->fence, true, false); nouveau_fence_unref(&fault->fence); } else { /* * FIXME wait for channel to be IDLE before calling finalizing * the hmem object below (nouveau_migrate_hmem_fini()). */ } while (fault->npages--) { dma_unmap_page(drm->dev->dev, fault->dma[fault->npages], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); } kfree(fault->dma); } static const struct migrate_vma_ops nouveau_dmem_fault_migrate_ops = { .alloc_and_copy = nouveau_dmem_fault_alloc_and_copy, .finalize_and_map = nouveau_dmem_fault_finalize_and_map, }; static vm_fault_t nouveau_dmem_fault(struct hmm_devmem *devmem, struct vm_area_struct *vma, unsigned long addr, const struct page *page, unsigned int flags, pmd_t *pmdp) { struct drm_device *drm_dev = dev_get_drvdata(devmem->device); unsigned long src[1] = {0}, dst[1] = {0}; struct nouveau_dmem_fault fault = {0}; int ret; /* * FIXME what we really want is to find some heuristic to migrate more * than just one page on CPU fault. When such fault happens it is very * likely that more surrounding page will CPU fault too. */ fault.drm = nouveau_drm(drm_dev); ret = migrate_vma(&nouveau_dmem_fault_migrate_ops, vma, addr, addr + PAGE_SIZE, src, dst, &fault); if (ret) return VM_FAULT_SIGBUS; if (dst[0] == MIGRATE_PFN_ERROR) return VM_FAULT_SIGBUS; return 0; } static const struct hmm_devmem_ops nouveau_dmem_devmem_ops = { .free = nouveau_dmem_free, .fault = nouveau_dmem_fault, }; static int nouveau_dmem_chunk_alloc(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk; int ret; if (drm->dmem == NULL) return -EINVAL; mutex_lock(&drm->dmem->mutex); chunk = list_first_entry_or_null(&drm->dmem->chunk_empty, struct nouveau_dmem_chunk, list); if (chunk == NULL) { mutex_unlock(&drm->dmem->mutex); return -ENOMEM; } list_del(&chunk->list); mutex_unlock(&drm->dmem->mutex); ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0, TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL, &chunk->bo); if (ret) goto out; ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false); if (ret) { nouveau_bo_ref(NULL, &chunk->bo); goto out; } bitmap_zero(chunk->bitmap, DMEM_CHUNK_NPAGES); spin_lock_init(&chunk->lock); out: mutex_lock(&drm->dmem->mutex); if (chunk->bo) list_add(&chunk->list, &drm->dmem->chunk_empty); else list_add_tail(&chunk->list, &drm->dmem->chunk_empty); mutex_unlock(&drm->dmem->mutex); return ret; } static struct nouveau_dmem_chunk * nouveau_dmem_chunk_first_free_locked(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk; chunk = list_first_entry_or_null(&drm->dmem->chunk_free, struct nouveau_dmem_chunk, list); if (chunk) return chunk; chunk = list_first_entry_or_null(&drm->dmem->chunk_empty, struct nouveau_dmem_chunk, list); if (chunk->bo) return chunk; return NULL; } static int nouveau_dmem_pages_alloc(struct nouveau_drm *drm, unsigned long npages, unsigned long *pages) { struct nouveau_dmem_chunk *chunk; unsigned long c; int ret; memset(pages, 0xff, npages * sizeof(*pages)); mutex_lock(&drm->dmem->mutex); for (c = 0; c < npages;) { unsigned long i; chunk = nouveau_dmem_chunk_first_free_locked(drm); if (chunk == NULL) { mutex_unlock(&drm->dmem->mutex); ret = nouveau_dmem_chunk_alloc(drm); if (ret) { if (c) break; return ret; } continue; } spin_lock(&chunk->lock); i = find_first_zero_bit(chunk->bitmap, DMEM_CHUNK_NPAGES); while (i < DMEM_CHUNK_NPAGES && c < npages) { pages[c] = chunk->pfn_first + i; set_bit(i, chunk->bitmap); chunk->callocated++; c++; i = find_next_zero_bit(chunk->bitmap, DMEM_CHUNK_NPAGES, i); } spin_unlock(&chunk->lock); } mutex_unlock(&drm->dmem->mutex); return 0; } static struct page * nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm) { unsigned long pfns[1]; struct page *page; int ret; /* FIXME stop all the miss-match API ... */ ret = nouveau_dmem_pages_alloc(drm, 1, pfns); if (ret) return NULL; page = pfn_to_page(pfns[0]); get_page(page); lock_page(page); return page; } static void nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page) { unlock_page(page); put_page(page); } void nouveau_dmem_resume(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk; int ret; if (drm->dmem == NULL) return; mutex_lock(&drm->dmem->mutex); list_for_each_entry (chunk, &drm->dmem->chunk_free, list) { ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false); /* FIXME handle pin failure */ WARN_ON(ret); } list_for_each_entry (chunk, &drm->dmem->chunk_full, list) { ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false); /* FIXME handle pin failure */ WARN_ON(ret); } mutex_unlock(&drm->dmem->mutex); } void nouveau_dmem_suspend(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk; if (drm->dmem == NULL) return; mutex_lock(&drm->dmem->mutex); list_for_each_entry (chunk, &drm->dmem->chunk_free, list) { nouveau_bo_unpin(chunk->bo); } list_for_each_entry (chunk, &drm->dmem->chunk_full, list) { nouveau_bo_unpin(chunk->bo); } mutex_unlock(&drm->dmem->mutex); } void nouveau_dmem_fini(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk, *tmp; if (drm->dmem == NULL) return; mutex_lock(&drm->dmem->mutex); WARN_ON(!list_empty(&drm->dmem->chunk_free)); WARN_ON(!list_empty(&drm->dmem->chunk_full)); list_for_each_entry_safe (chunk, tmp, &drm->dmem->chunk_empty, list) { if (chunk->bo) { nouveau_bo_unpin(chunk->bo); nouveau_bo_ref(NULL, &chunk->bo); } list_del(&chunk->list); kfree(chunk); } mutex_unlock(&drm->dmem->mutex); } static int nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages, enum nouveau_aper dst_aper, u64 dst_addr, enum nouveau_aper src_aper, u64 src_addr) { struct nouveau_channel *chan = drm->dmem->migrate.chan; u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ | (1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ | (1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ | (1 << 2) /* FLUSH_ENABLE_TRUE. */ | (2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */; int ret; ret = RING_SPACE(chan, 13); if (ret) return ret; if (src_aper != NOUVEAU_APER_VIRT) { switch (src_aper) { case NOUVEAU_APER_VRAM: BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0); break; case NOUVEAU_APER_HOST: BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1); break; default: return -EINVAL; } launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */ } if (dst_aper != NOUVEAU_APER_VIRT) { switch (dst_aper) { case NOUVEAU_APER_VRAM: BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0); break; case NOUVEAU_APER_HOST: BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1); break; default: return -EINVAL; } launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */ } BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8); OUT_RING (chan, upper_32_bits(src_addr)); OUT_RING (chan, lower_32_bits(src_addr)); OUT_RING (chan, upper_32_bits(dst_addr)); OUT_RING (chan, lower_32_bits(dst_addr)); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, PAGE_SIZE); OUT_RING (chan, npages); BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1); OUT_RING (chan, launch_dma); return 0; } static int nouveau_dmem_migrate_init(struct nouveau_drm *drm) { switch (drm->ttm.copy.oclass) { case PASCAL_DMA_COPY_A: case PASCAL_DMA_COPY_B: case VOLTA_DMA_COPY_A: case TURING_DMA_COPY_A: drm->dmem->migrate.copy_func = nvc0b5_migrate_copy; drm->dmem->migrate.chan = drm->ttm.chan; return 0; default: break; } return -ENODEV; } void nouveau_dmem_init(struct nouveau_drm *drm) { struct device *device = drm->dev->dev; unsigned long i, size; int ret; /* This only make sense on PASCAL or newer */ if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL) return; if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL))) return; mutex_init(&drm->dmem->mutex); INIT_LIST_HEAD(&drm->dmem->chunk_free); INIT_LIST_HEAD(&drm->dmem->chunk_full); INIT_LIST_HEAD(&drm->dmem->chunk_empty); size = ALIGN(drm->client.device.info.ram_user, DMEM_CHUNK_SIZE); /* Initialize migration dma helpers before registering memory */ ret = nouveau_dmem_migrate_init(drm); if (ret) { kfree(drm->dmem); drm->dmem = NULL; return; } /* * FIXME we need some kind of policy to decide how much VRAM we * want to register with HMM. For now just register everything * and latter if we want to do thing like over commit then we * could revisit this. */ drm->dmem->devmem = hmm_devmem_add(&nouveau_dmem_devmem_ops, device, size); if (IS_ERR(drm->dmem->devmem)) { kfree(drm->dmem); drm->dmem = NULL; return; } for (i = 0; i < (size / DMEM_CHUNK_SIZE); ++i) { struct nouveau_dmem_chunk *chunk; struct page *page; unsigned long j; chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); if (chunk == NULL) { nouveau_dmem_fini(drm); return; } chunk->drm = drm; chunk->pfn_first = drm->dmem->devmem->pfn_first; chunk->pfn_first += (i * DMEM_CHUNK_NPAGES); list_add_tail(&chunk->list, &drm->dmem->chunk_empty); page = pfn_to_page(chunk->pfn_first); for (j = 0; j < DMEM_CHUNK_NPAGES; ++j, ++page) { hmm_devmem_page_set_drvdata(page, (long)chunk); } } NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", size >> 20); } static void nouveau_dmem_migrate_alloc_and_copy(struct vm_area_struct *vma, const unsigned long *src_pfns, unsigned long *dst_pfns, unsigned long start, unsigned long end, void *private) { struct nouveau_migrate *migrate = private; struct nouveau_drm *drm = migrate->drm; struct device *dev = drm->dev->dev; unsigned long addr, i, npages = 0; nouveau_migrate_copy_t copy; int ret; /* First allocate new memory */ for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) { struct page *dpage, *spage; dst_pfns[i] = 0; spage = migrate_pfn_to_page(src_pfns[i]); if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) continue; dpage = nouveau_dmem_page_alloc_locked(drm); if (!dpage) continue; dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED | MIGRATE_PFN_DEVICE; npages++; } if (!npages) return; /* Allocate storage for DMA addresses, so we can unmap later. */ migrate->dma = kmalloc(sizeof(*migrate->dma) * npages, GFP_KERNEL); if (!migrate->dma) goto error; /* Copy things over */ copy = drm->dmem->migrate.copy_func; for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) { struct nouveau_dmem_chunk *chunk; struct page *spage, *dpage; u64 src_addr, dst_addr; dpage = migrate_pfn_to_page(dst_pfns[i]); if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR) continue; chunk = (void *)hmm_devmem_page_get_drvdata(dpage); dst_addr = page_to_pfn(dpage) - chunk->pfn_first; dst_addr = (dst_addr << PAGE_SHIFT) + chunk->bo->bo.offset; spage = migrate_pfn_to_page(src_pfns[i]); if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) { nouveau_dmem_page_free_locked(drm, dpage); dst_pfns[i] = 0; continue; } migrate->dma[migrate->dma_nr] = dma_map_page_attrs(dev, spage, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(dev, migrate->dma[migrate->dma_nr])) { nouveau_dmem_page_free_locked(drm, dpage); dst_pfns[i] = 0; continue; } src_addr = migrate->dma[migrate->dma_nr++]; ret = copy(drm, 1, NOUVEAU_APER_VRAM, dst_addr, NOUVEAU_APER_HOST, src_addr); if (ret) { nouveau_dmem_page_free_locked(drm, dpage); dst_pfns[i] = 0; continue; } } nouveau_fence_new(drm->dmem->migrate.chan, false, &migrate->fence); return; error: for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) { struct page *page; if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR) continue; page = migrate_pfn_to_page(dst_pfns[i]); dst_pfns[i] = MIGRATE_PFN_ERROR; if (page == NULL) continue; __free_page(page); } } void nouveau_dmem_migrate_finalize_and_map(struct vm_area_struct *vma, const unsigned long *src_pfns, const unsigned long *dst_pfns, unsigned long start, unsigned long end, void *private) { struct nouveau_migrate *migrate = private; struct nouveau_drm *drm = migrate->drm; if (migrate->fence) { nouveau_fence_wait(migrate->fence, true, false); nouveau_fence_unref(&migrate->fence); } else { /* * FIXME wait for channel to be IDLE before finalizing * the hmem object below (nouveau_migrate_hmem_fini()) ? */ } while (migrate->dma_nr--) { dma_unmap_page(drm->dev->dev, migrate->dma[migrate->dma_nr], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); } kfree(migrate->dma); /* * FIXME optimization: update GPU page table to point to newly * migrated memory. */ } static const struct migrate_vma_ops nouveau_dmem_migrate_ops = { .alloc_and_copy = nouveau_dmem_migrate_alloc_and_copy, .finalize_and_map = nouveau_dmem_migrate_finalize_and_map, }; int nouveau_dmem_migrate_vma(struct nouveau_drm *drm, struct vm_area_struct *vma, unsigned long start, unsigned long end) { unsigned long *src_pfns, *dst_pfns, npages; struct nouveau_migrate migrate = {0}; unsigned long i, c, max; int ret = 0; npages = (end - start) >> PAGE_SHIFT; max = min(SG_MAX_SINGLE_ALLOC, npages); src_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL); if (src_pfns == NULL) return -ENOMEM; dst_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL); if (dst_pfns == NULL) { kfree(src_pfns); return -ENOMEM; } migrate.drm = drm; migrate.vma = vma; migrate.npages = npages; for (i = 0; i < npages; i += c) { unsigned long next; c = min(SG_MAX_SINGLE_ALLOC, npages); next = start + (c << PAGE_SHIFT); ret = migrate_vma(&nouveau_dmem_migrate_ops, vma, start, next, src_pfns, dst_pfns, &migrate); if (ret) goto out; start = next; } out: kfree(dst_pfns); kfree(src_pfns); return ret; } static inline bool nouveau_dmem_page(struct nouveau_drm *drm, struct page *page) { if (!is_device_private_page(page)) return false; if (drm->dmem->devmem != page->pgmap->data) return false; return true; } void nouveau_dmem_convert_pfn(struct nouveau_drm *drm, struct hmm_range *range) { unsigned long i, npages; npages = (range->end - range->start) >> PAGE_SHIFT; for (i = 0; i < npages; ++i) { struct nouveau_dmem_chunk *chunk; struct page *page; uint64_t addr; page = hmm_pfn_to_page(range, range->pfns[i]); if (page == NULL) continue; if (!(range->pfns[i] & range->flags[HMM_PFN_DEVICE_PRIVATE])) { continue; } if (!nouveau_dmem_page(drm, page)) { WARN(1, "Some unknown device memory !\n"); range->pfns[i] = 0; continue; } chunk = (void *)hmm_devmem_page_get_drvdata(page); addr = page_to_pfn(page) - chunk->pfn_first; addr = (addr + chunk->bo->bo.mem.start) << PAGE_SHIFT; range->pfns[i] &= ((1UL << range->pfn_shift) - 1); range->pfns[i] |= (addr >> PAGE_SHIFT) << range->pfn_shift; } }