/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "nv50.h" #include "pll.h" #include "seq.h" #include #include static u32 read_div(struct nv50_clk *clk) { struct nvkm_device *device = clk->base.subdev.device; switch (device->chipset) { case 0x50: /* it exists, but only has bit 31, not the dividers.. */ case 0x84: case 0x86: case 0x98: case 0xa0: return nvkm_rd32(device, 0x004700); case 0x92: case 0x94: case 0x96: return nvkm_rd32(device, 0x004800); default: return 0x00000000; } } static u32 read_pll_src(struct nv50_clk *clk, u32 base) { struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal); u32 rsel = nvkm_rd32(device, 0x00e18c); int P, N, M, id; switch (device->chipset) { case 0x50: case 0xa0: switch (base) { case 0x4020: case 0x4028: id = !!(rsel & 0x00000004); break; case 0x4008: id = !!(rsel & 0x00000008); break; case 0x4030: id = 0; break; default: nvkm_error(subdev, "ref: bad pll %06x\n", base); return 0; } coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c)); ref *= (coef & 0x01000000) ? 2 : 4; P = (coef & 0x00070000) >> 16; N = ((coef & 0x0000ff00) >> 8) + 1; M = ((coef & 0x000000ff) >> 0) + 1; break; case 0x84: case 0x86: case 0x92: coef = nvkm_rd32(device, 0x00e81c); P = (coef & 0x00070000) >> 16; N = (coef & 0x0000ff00) >> 8; M = (coef & 0x000000ff) >> 0; break; case 0x94: case 0x96: case 0x98: rsel = nvkm_rd32(device, 0x00c050); switch (base) { case 0x4020: rsel = (rsel & 0x00000003) >> 0; break; case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break; case 0x4028: rsel = (rsel & 0x00001800) >> 11; break; case 0x4030: rsel = 3; break; default: nvkm_error(subdev, "ref: bad pll %06x\n", base); return 0; } switch (rsel) { case 0: id = 1; break; case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal); case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href); case 3: id = 0; break; } coef = nvkm_rd32(device, 0x00e81c + (id * 0x28)); P = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7; P += (coef & 0x00070000) >> 16; N = (coef & 0x0000ff00) >> 8; M = (coef & 0x000000ff) >> 0; break; default: BUG(); } if (M) return (ref * N / M) >> P; return 0; } static u32 read_pll_ref(struct nv50_clk *clk, u32 base) { struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; u32 src, mast = nvkm_rd32(device, 0x00c040); switch (base) { case 0x004028: src = !!(mast & 0x00200000); break; case 0x004020: src = !!(mast & 0x00400000); break; case 0x004008: src = !!(mast & 0x00010000); break; case 0x004030: src = !!(mast & 0x02000000); break; case 0x00e810: return nvkm_clk_read(&clk->base, nv_clk_src_crystal); default: nvkm_error(subdev, "bad pll %06x\n", base); return 0; } if (src) return nvkm_clk_read(&clk->base, nv_clk_src_href); return read_pll_src(clk, base); } static u32 read_pll(struct nv50_clk *clk, u32 base) { struct nvkm_device *device = clk->base.subdev.device; u32 mast = nvkm_rd32(device, 0x00c040); u32 ctrl = nvkm_rd32(device, base + 0); u32 coef = nvkm_rd32(device, base + 4); u32 ref = read_pll_ref(clk, base); u32 freq = 0; int N1, N2, M1, M2; if (base == 0x004028 && (mast & 0x00100000)) { /* wtf, appears to only disable post-divider on gt200 */ if (device->chipset != 0xa0) return nvkm_clk_read(&clk->base, nv_clk_src_dom6); } N2 = (coef & 0xff000000) >> 24; M2 = (coef & 0x00ff0000) >> 16; N1 = (coef & 0x0000ff00) >> 8; M1 = (coef & 0x000000ff); if ((ctrl & 0x80000000) && M1) { freq = ref * N1 / M1; if ((ctrl & 0x40000100) == 0x40000000) { if (M2) freq = freq * N2 / M2; else freq = 0; } } return freq; } int nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src) { struct nv50_clk *clk = nv50_clk(base); struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; u32 mast = nvkm_rd32(device, 0x00c040); u32 P = 0; switch (src) { case nv_clk_src_crystal: return device->crystal; case nv_clk_src_href: return 100000; /* PCIE reference clock */ case nv_clk_src_hclk: return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000); case nv_clk_src_hclkm3: return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3; case nv_clk_src_hclkm3d2: return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2; case nv_clk_src_host: switch (mast & 0x30000000) { case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href); case 0x10000000: break; case 0x20000000: /* !0x50 */ case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk); } break; case nv_clk_src_core: if (!(mast & 0x00100000)) P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16; switch (mast & 0x00000003) { case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P; case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6); case 0x00000002: return read_pll(clk, 0x004020) >> P; case 0x00000003: return read_pll(clk, 0x004028) >> P; } break; case nv_clk_src_shader: P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16; switch (mast & 0x00000030) { case 0x00000000: if (mast & 0x00000080) return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P; return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P; case 0x00000010: break; case 0x00000020: return read_pll(clk, 0x004028) >> P; case 0x00000030: return read_pll(clk, 0x004020) >> P; } break; case nv_clk_src_mem: P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16; if (nvkm_rd32(device, 0x004008) & 0x00000200) { switch (mast & 0x0000c000) { case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P; case 0x00008000: case 0x0000c000: return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P; } } else { return read_pll(clk, 0x004008) >> P; } break; case nv_clk_src_vdec: P = (read_div(clk) & 0x00000700) >> 8; switch (device->chipset) { case 0x84: case 0x86: case 0x92: case 0x94: case 0x96: case 0xa0: switch (mast & 0x00000c00) { case 0x00000000: if (device->chipset == 0xa0) /* wtf?? */ return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P; return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P; case 0x00000400: return 0; case 0x00000800: if (mast & 0x01000000) return read_pll(clk, 0x004028) >> P; return read_pll(clk, 0x004030) >> P; case 0x00000c00: return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P; } break; case 0x98: switch (mast & 0x00000c00) { case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P; case 0x00000400: return 0; case 0x00000800: return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P; case 0x00000c00: return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P; } break; } break; case nv_clk_src_dom6: switch (device->chipset) { case 0x50: case 0xa0: return read_pll(clk, 0x00e810) >> 2; case 0x84: case 0x86: case 0x92: case 0x94: case 0x96: case 0x98: P = (read_div(clk) & 0x00000007) >> 0; switch (mast & 0x0c000000) { case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href); case 0x04000000: break; case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk); case 0x0c000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P; } break; default: break; } default: break; } nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast); return -EINVAL; } static u32 calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P) { struct nvkm_subdev *subdev = &clk->base.subdev; struct nvbios_pll pll; int ret; ret = nvbios_pll_parse(subdev->device->bios, reg, &pll); if (ret) return 0; pll.vco2.max_freq = 0; pll.refclk = read_pll_ref(clk, reg); if (!pll.refclk) return 0; return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P); } static inline u32 calc_div(u32 src, u32 target, int *div) { u32 clk0 = src, clk1 = src; for (*div = 0; *div <= 7; (*div)++) { if (clk0 <= target) { clk1 = clk0 << (*div ? 1 : 0); break; } clk0 >>= 1; } if (target - clk0 <= clk1 - target) return clk0; (*div)--; return clk1; } static inline u32 clk_same(u32 a, u32 b) { return ((a / 1000) == (b / 1000)); } int nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) { struct nv50_clk *clk = nv50_clk(base); struct nv50_clk_hwsq *hwsq = &clk->hwsq; struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; const int shader = cstate->domain[nv_clk_src_shader]; const int core = cstate->domain[nv_clk_src_core]; const int vdec = cstate->domain[nv_clk_src_vdec]; const int dom6 = cstate->domain[nv_clk_src_dom6]; u32 mastm = 0, mastv = 0; u32 divsm = 0, divsv = 0; int N, M, P1, P2; int freq, out; /* prepare a hwsq script from which we'll perform the reclock */ out = clk_init(hwsq, subdev); if (out) return out; clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */ clk_nsec(hwsq, 8000); clk_setf(hwsq, 0x10, 0x00); /* disable fb */ clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */ /* vdec: avoid modifying xpll until we know exactly how the other * clock domains work, i suspect at least some of them can also be * tied to xpll... */ if (vdec) { /* see how close we can get using nvclk as a source */ freq = calc_div(core, vdec, &P1); /* see how close we can get using xpll/hclk as a source */ if (device->chipset != 0x98) out = read_pll(clk, 0x004030); else out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2); out = calc_div(out, vdec, &P2); /* select whichever gets us closest */ if (abs(vdec - freq) <= abs(vdec - out)) { if (device->chipset != 0x98) mastv |= 0x00000c00; divsv |= P1 << 8; } else { mastv |= 0x00000800; divsv |= P2 << 8; } mastm |= 0x00000c00; divsm |= 0x00000700; } /* dom6: nfi what this is, but we're limited to various combinations * of the host clock frequency */ if (dom6) { if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) { mastv |= 0x00000000; } else if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) { mastv |= 0x08000000; } else { freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3; calc_div(freq, dom6, &P1); mastv |= 0x0c000000; divsv |= P1; } mastm |= 0x0c000000; divsm |= 0x00000007; } /* vdec/dom6: switch to "safe" clocks temporarily, update dividers * and then switch to target clocks */ clk_mask(hwsq, mast, mastm, 0x00000000); clk_mask(hwsq, divs, divsm, divsv); clk_mask(hwsq, mast, mastm, mastv); /* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6, * sclk to hclk) before reprogramming */ if (device->chipset < 0x92) clk_mask(hwsq, mast, 0x001000b0, 0x00100080); else clk_mask(hwsq, mast, 0x000000b3, 0x00000081); /* core: for the moment at least, always use nvpll */ freq = calc_pll(clk, 0x4028, core, &N, &M, &P1); if (freq == 0) return -ERANGE; clk_mask(hwsq, nvpll[0], 0xc03f0100, 0x80000000 | (P1 << 19) | (P1 << 16)); clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M); /* shader: tie to nvclk if possible, otherwise use spll. have to be * very careful that the shader clock is at least twice the core, or * some chipsets will be very unhappy. i expect most or all of these * cases will be handled by tying to nvclk, but it's possible there's * corners */ if (P1-- && shader == (core << 1)) { clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16)); clk_mask(hwsq, mast, 0x00100033, 0x00000023); } else { freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1); if (freq == 0) return -ERANGE; clk_mask(hwsq, spll[0], 0xc03f0100, 0x80000000 | (P1 << 19) | (P1 << 16)); clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M); clk_mask(hwsq, mast, 0x00100033, 0x00000033); } /* restore normal operation */ clk_setf(hwsq, 0x10, 0x01); /* enable fb */ clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */ clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */ return 0; } int nv50_clk_prog(struct nvkm_clk *base) { struct nv50_clk *clk = nv50_clk(base); return clk_exec(&clk->hwsq, true); } void nv50_clk_tidy(struct nvkm_clk *base) { struct nv50_clk *clk = nv50_clk(base); clk_exec(&clk->hwsq, false); } int nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device, int index, bool allow_reclock, struct nvkm_clk **pclk) { struct nv50_clk *clk; int ret; if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL))) return -ENOMEM; ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base); *pclk = &clk->base; if (ret) return ret; clk->hwsq.r_fifo = hwsq_reg(0x002504); clk->hwsq.r_spll[0] = hwsq_reg(0x004020); clk->hwsq.r_spll[1] = hwsq_reg(0x004024); clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028); clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c); switch (device->chipset) { case 0x92: case 0x94: case 0x96: clk->hwsq.r_divs = hwsq_reg(0x004800); break; default: clk->hwsq.r_divs = hwsq_reg(0x004700); break; } clk->hwsq.r_mast = hwsq_reg(0x00c040); return 0; } static const struct nvkm_clk_func nv50_clk = { .read = nv50_clk_read, .calc = nv50_clk_calc, .prog = nv50_clk_prog, .tidy = nv50_clk_tidy, .domains = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_href , 0xff }, { nv_clk_src_core , 0xff, 0, "core", 1000 }, { nv_clk_src_shader , 0xff, 0, "shader", 1000 }, { nv_clk_src_mem , 0xff, 0, "memory", 1000 }, { nv_clk_src_max } } }; int nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk) { return nv50_clk_new_(&nv50_clk, device, index, false, pclk); }