/* * Copyright (C) 2015 Broadcom * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /** * DOC: VC4 CRTC module * * In VC4, the Pixel Valve is what most closely corresponds to the * DRM's concept of a CRTC. The PV generates video timings from the * output's clock plus its configuration. It pulls scaled pixels from * the HVS at that timing, and feeds it to the encoder. * * However, the DRM CRTC also collects the configuration of all the * DRM planes attached to it. As a result, this file also manages * setup of the VC4 HVS's display elements on the CRTC. * * The 2835 has 3 different pixel valves. pv0 in the audio power * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the * image domain can feed either HDMI or the SDTV controller. The * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for * SDTV, etc.) according to which output type is chosen in the mux. * * For power management, the pixel valve's registers are all clocked * by the AXI clock, while the timings and FIFOs make use of the * output-specific clock. Since the encoders also directly consume * the CPRMAN clocks, and know what timings they need, they are the * ones that set the clock. */ #include "drm_atomic.h" #include "drm_atomic_helper.h" #include "drm_crtc_helper.h" #include "linux/clk.h" #include "linux/component.h" #include "linux/of_device.h" #include "vc4_drv.h" #include "vc4_regs.h" struct vc4_crtc { struct drm_crtc base; const struct vc4_crtc_data *data; void __iomem *regs; /* Which HVS channel we're using for our CRTC. */ int channel; /* Pointer to the actual hardware display list memory for the * crtc. */ u32 __iomem *dlist; u32 dlist_size; /* in dwords */ struct drm_pending_vblank_event *event; }; static inline struct vc4_crtc * to_vc4_crtc(struct drm_crtc *crtc) { return (struct vc4_crtc *)crtc; } struct vc4_crtc_data { /* Which channel of the HVS this pixelvalve sources from. */ int hvs_channel; enum vc4_encoder_type encoder0_type; enum vc4_encoder_type encoder1_type; }; #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) #define CRTC_REG(reg) { reg, #reg } static const struct { u32 reg; const char *name; } crtc_regs[] = { CRTC_REG(PV_CONTROL), CRTC_REG(PV_V_CONTROL), CRTC_REG(PV_VSYNCD), CRTC_REG(PV_HORZA), CRTC_REG(PV_HORZB), CRTC_REG(PV_VERTA), CRTC_REG(PV_VERTB), CRTC_REG(PV_VERTA_EVEN), CRTC_REG(PV_VERTB_EVEN), CRTC_REG(PV_INTEN), CRTC_REG(PV_INTSTAT), CRTC_REG(PV_STAT), CRTC_REG(PV_HACT_ACT), }; static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) { int i; for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { DRM_INFO("0x%04x (%s): 0x%08x\n", crtc_regs[i].reg, crtc_regs[i].name, CRTC_READ(crtc_regs[i].reg)); } } #ifdef CONFIG_DEBUG_FS int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct drm_device *dev = node->minor->dev; int crtc_index = (uintptr_t)node->info_ent->data; struct drm_crtc *crtc; struct vc4_crtc *vc4_crtc; int i; i = 0; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (i == crtc_index) break; i++; } if (!crtc) return 0; vc4_crtc = to_vc4_crtc(crtc); for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { seq_printf(m, "%s (0x%04x): 0x%08x\n", crtc_regs[i].name, crtc_regs[i].reg, CRTC_READ(crtc_regs[i].reg)); } return 0; } #endif static void vc4_crtc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); } static u32 vc4_get_fifo_full_level(u32 format) { static const u32 fifo_len_bytes = 64; static const u32 hvs_latency_pix = 6; switch (format) { case PV_CONTROL_FORMAT_DSIV_16: case PV_CONTROL_FORMAT_DSIC_16: return fifo_len_bytes - 2 * hvs_latency_pix; case PV_CONTROL_FORMAT_DSIV_18: return fifo_len_bytes - 14; case PV_CONTROL_FORMAT_24: case PV_CONTROL_FORMAT_DSIV_24: default: return fifo_len_bytes - 3 * hvs_latency_pix; } } /* * Returns the clock select bit for the connector attached to the * CRTC. */ static int vc4_get_clock_select(struct drm_crtc *crtc) { struct drm_connector *connector; drm_for_each_connector(connector, crtc->dev) { if (connector && connector->state->crtc == crtc) { struct drm_encoder *encoder = connector->encoder; struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); return vc4_encoder->clock_select; } } return -1; } static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_crtc_state *state = crtc->state; struct drm_display_mode *mode = &state->adjusted_mode; bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0)); u32 format = PV_CONTROL_FORMAT_24; bool debug_dump_regs = false; int clock_select = vc4_get_clock_select(crtc); if (debug_dump_regs) { DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); vc4_crtc_dump_regs(vc4_crtc); } /* Reset the PV fifo. */ CRTC_WRITE(PV_CONTROL, 0); CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); CRTC_WRITE(PV_CONTROL, 0); CRTC_WRITE(PV_HORZA, VC4_SET_FIELD(mode->htotal - mode->hsync_end, PV_HORZA_HBP) | VC4_SET_FIELD(mode->hsync_end - mode->hsync_start, PV_HORZA_HSYNC)); CRTC_WRITE(PV_HORZB, VC4_SET_FIELD(mode->hsync_start - mode->hdisplay, PV_HORZB_HFP) | VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE)); if (interlace) { CRTC_WRITE(PV_VERTA_EVEN, VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1, PV_VERTA_VBP) | VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB_EVEN, VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, PV_VERTB_VFP) | VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); } CRTC_WRITE(PV_HACT_ACT, mode->hdisplay); CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS | (interlace ? PV_VCONTROL_INTERLACE : 0)); CRTC_WRITE(PV_CONTROL, VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | VC4_SET_FIELD(vc4_get_fifo_full_level(format), PV_CONTROL_FIFO_LEVEL) | PV_CONTROL_CLR_AT_START | PV_CONTROL_TRIGGER_UNDERFLOW | PV_CONTROL_WAIT_HSTART | VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); if (debug_dump_regs) { DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); vc4_crtc_dump_regs(vc4_crtc); } } static void require_hvs_enabled(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != SCALER_DISPCTRL_ENABLE); } static void vc4_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); u32 chan = vc4_crtc->channel; int ret; require_hvs_enabled(dev); CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE) { HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET); /* While the docs say that reset is self-clearing, it * seems it doesn't actually. */ HVS_WRITE(SCALER_DISPCTRLX(chan), 0); } /* Once we leave, the scaler should be disabled and its fifo empty. */ WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), SCALER_DISPSTATX_MODE) != SCALER_DISPSTATX_MODE_DISABLED); WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != SCALER_DISPSTATX_EMPTY); } static void vc4_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_crtc_state *state = crtc->state; struct drm_display_mode *mode = &state->adjusted_mode; require_hvs_enabled(dev); /* Turn on the scaler, which will wait for vstart to start * compositing. */ HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | SCALER_DISPCTRLX_ENABLE); /* Turn on the pixel valve, which will emit the vstart signal. */ CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); } static int vc4_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); u32 dlist_count = 0; /* The pixelvalve can only feed one encoder (and encoders are * 1:1 with connectors.) */ if (drm_atomic_connectors_for_crtc(state->state, crtc) > 1) return -EINVAL; drm_atomic_crtc_state_for_each_plane(plane, state) { struct drm_plane_state *plane_state = state->state->plane_states[drm_plane_index(plane)]; /* plane might not have changed, in which case take * current state: */ if (!plane_state) plane_state = plane->state; dlist_count += vc4_plane_dlist_size(plane_state); } dlist_count++; /* Account for SCALER_CTL0_END. */ if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) { vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist + HVS_BOOTLOADER_DLIST_END); vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END); if (dlist_count > vc4_crtc->dlist_size) { DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n", dlist_count, vc4_crtc->dlist_size); return -EINVAL; } } return 0; } static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_plane *plane; bool debug_dump_regs = false; u32 __iomem *dlist_next = vc4_crtc->dlist; if (debug_dump_regs) { DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); vc4_hvs_dump_state(dev); } /* Copy all the active planes' dlist contents to the hardware dlist. * * XXX: If the new display list was large enough that it * overlapped a currently-read display list, we need to do * something like disable scanout before putting in the new * list. For now, we're safe because we only have the two * planes. */ drm_atomic_crtc_for_each_plane(plane, crtc) { dlist_next += vc4_plane_write_dlist(plane, dlist_next); } if (dlist_next == vc4_crtc->dlist) { /* If no planes were enabled, use the SCALER_CTL0_END * at the start of the display list memory (in the * bootloader section). We'll rewrite that * SCALER_CTL0_END, just in case, though. */ writel(SCALER_CTL0_END, vc4->hvs->dlist); HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0); } else { writel(SCALER_CTL0_END, dlist_next); dlist_next++; HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), (u32 *)vc4_crtc->dlist - (u32 *)vc4->hvs->dlist); /* Make the next display list start after ours. */ vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist); vc4_crtc->dlist = dlist_next; } if (debug_dump_regs) { DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); vc4_hvs_dump_state(dev); } if (crtc->state->event) { unsigned long flags; crtc->state->event->pipe = drm_crtc_index(crtc); WARN_ON(drm_crtc_vblank_get(crtc) != 0); spin_lock_irqsave(&dev->event_lock, flags); vc4_crtc->event = crtc->state->event; spin_unlock_irqrestore(&dev->event_lock, flags); crtc->state->event = NULL; } } int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); return 0; } void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; CRTC_WRITE(PV_INTEN, 0); } static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) { struct drm_crtc *crtc = &vc4_crtc->base; struct drm_device *dev = crtc->dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (vc4_crtc->event) { drm_crtc_send_vblank_event(crtc, vc4_crtc->event); vc4_crtc->event = NULL; } spin_unlock_irqrestore(&dev->event_lock, flags); } static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) { struct vc4_crtc *vc4_crtc = data; u32 stat = CRTC_READ(PV_INTSTAT); irqreturn_t ret = IRQ_NONE; if (stat & PV_INT_VFP_START) { CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); drm_crtc_handle_vblank(&vc4_crtc->base); vc4_crtc_handle_page_flip(vc4_crtc); ret = IRQ_HANDLED; } return ret; } static const struct drm_crtc_funcs vc4_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .destroy = vc4_crtc_destroy, .page_flip = drm_atomic_helper_page_flip, .set_property = NULL, .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, }; static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { .mode_set_nofb = vc4_crtc_mode_set_nofb, .disable = vc4_crtc_disable, .enable = vc4_crtc_enable, .atomic_check = vc4_crtc_atomic_check, .atomic_flush = vc4_crtc_atomic_flush, }; /* Frees the page flip event when the DRM device is closed with the * event still outstanding. */ void vc4_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (vc4_crtc->event && vc4_crtc->event->base.file_priv == file) { vc4_crtc->event->base.destroy(&vc4_crtc->event->base); drm_crtc_vblank_put(crtc); vc4_crtc->event = NULL; } spin_unlock_irqrestore(&dev->event_lock, flags); } static const struct vc4_crtc_data pv0_data = { .hvs_channel = 0, .encoder0_type = VC4_ENCODER_TYPE_DSI0, .encoder1_type = VC4_ENCODER_TYPE_DPI, }; static const struct vc4_crtc_data pv1_data = { .hvs_channel = 2, .encoder0_type = VC4_ENCODER_TYPE_DSI1, .encoder1_type = VC4_ENCODER_TYPE_SMI, }; static const struct vc4_crtc_data pv2_data = { .hvs_channel = 1, .encoder0_type = VC4_ENCODER_TYPE_VEC, .encoder1_type = VC4_ENCODER_TYPE_HDMI, }; static const struct of_device_id vc4_crtc_dt_match[] = { { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, {} }; static void vc4_set_crtc_possible_masks(struct drm_device *drm, struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_encoder *encoder; drm_for_each_encoder(encoder, drm) { struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); if (vc4_encoder->type == vc4_crtc->data->encoder0_type) { vc4_encoder->clock_select = 0; encoder->possible_crtcs |= drm_crtc_mask(crtc); } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) { vc4_encoder->clock_select = 1; encoder->possible_crtcs |= drm_crtc_mask(crtc); } } } static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_crtc *vc4_crtc; struct drm_crtc *crtc; struct drm_plane *primary_plane, *cursor_plane; const struct of_device_id *match; int ret; vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); if (!vc4_crtc) return -ENOMEM; crtc = &vc4_crtc->base; match = of_match_device(vc4_crtc_dt_match, dev); if (!match) return -ENODEV; vc4_crtc->data = match->data; vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(vc4_crtc->regs)) return PTR_ERR(vc4_crtc->regs); /* For now, we create just the primary and the legacy cursor * planes. We should be able to stack more planes on easily, * but to do that we would need to compute the bandwidth * requirement of the plane configuration, and reject ones * that will take too much. */ primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); if (!primary_plane) { dev_err(dev, "failed to construct primary plane\n"); ret = PTR_ERR(primary_plane); goto err; } cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); if (!cursor_plane) { dev_err(dev, "failed to construct cursor plane\n"); ret = PTR_ERR(cursor_plane); goto err_primary; } drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane, &vc4_crtc_funcs); drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); primary_plane->crtc = crtc; cursor_plane->crtc = crtc; vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; vc4_crtc->channel = vc4_crtc->data->hvs_channel; CRTC_WRITE(PV_INTEN, 0); CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); if (ret) goto err_cursor; vc4_set_crtc_possible_masks(drm, crtc); platform_set_drvdata(pdev, vc4_crtc); return 0; err_cursor: cursor_plane->funcs->destroy(cursor_plane); err_primary: primary_plane->funcs->destroy(primary_plane); err: return ret; } static void vc4_crtc_unbind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); vc4_crtc_destroy(&vc4_crtc->base); CRTC_WRITE(PV_INTEN, 0); platform_set_drvdata(pdev, NULL); } static const struct component_ops vc4_crtc_ops = { .bind = vc4_crtc_bind, .unbind = vc4_crtc_unbind, }; static int vc4_crtc_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_crtc_ops); } static int vc4_crtc_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_crtc_ops); return 0; } struct platform_driver vc4_crtc_driver = { .probe = vc4_crtc_dev_probe, .remove = vc4_crtc_dev_remove, .driver = { .name = "vc4_crtc", .of_match_table = vc4_crtc_dt_match, }, };